513 lines
21 KiB
C
513 lines
21 KiB
C
|
/*
|
||
|
* ICE / OPCODE - Optimized Collision Detection
|
||
|
* http://www.codercorner.com/Opcode.htm
|
||
|
*
|
||
|
* Copyright (c) 2001-2008 Pierre Terdiman, pierre@codercorner.com
|
||
|
|
||
|
This software is provided 'as-is', without any express or implied warranty.
|
||
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
||
|
Permission is granted to anyone to use this software for any purpose,
|
||
|
including commercial applications, and to alter it and redistribute it freely,
|
||
|
subject to the following restrictions:
|
||
|
|
||
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||
|
3. This notice may not be removed or altered from any source distribution.
|
||
|
*/
|
||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
/**
|
||
|
* Contains code for 3x3 matrices.
|
||
|
* \file IceMatrix3x3.h
|
||
|
* \author Pierre Terdiman
|
||
|
* \date April, 4, 2000
|
||
|
*/
|
||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
// Include Guard
|
||
|
#ifndef __ICEMATRIX3X3_H__
|
||
|
#define __ICEMATRIX3X3_H__
|
||
|
|
||
|
// Forward declarations
|
||
|
class Quat;
|
||
|
|
||
|
#define MATRIX3X3_EPSILON (1.0e-7f)
|
||
|
|
||
|
class ICEMATHS_API Matrix3x3
|
||
|
{
|
||
|
public:
|
||
|
//! Empty constructor
|
||
|
inline_ Matrix3x3() {}
|
||
|
//! Constructor from 9 values
|
||
|
inline_ Matrix3x3(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22)
|
||
|
{
|
||
|
m[0][0] = m00; m[0][1] = m01; m[0][2] = m02;
|
||
|
m[1][0] = m10; m[1][1] = m11; m[1][2] = m12;
|
||
|
m[2][0] = m20; m[2][1] = m21; m[2][2] = m22;
|
||
|
}
|
||
|
//! Copy constructor
|
||
|
inline_ Matrix3x3(const Matrix3x3& mat) { CopyMemory(m, &mat.m, 9*sizeof(float)); }
|
||
|
//! Destructor
|
||
|
inline_ ~Matrix3x3() {}
|
||
|
|
||
|
//! Assign values
|
||
|
inline_ void Set(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22)
|
||
|
{
|
||
|
m[0][0] = m00; m[0][1] = m01; m[0][2] = m02;
|
||
|
m[1][0] = m10; m[1][1] = m11; m[1][2] = m12;
|
||
|
m[2][0] = m20; m[2][1] = m21; m[2][2] = m22;
|
||
|
}
|
||
|
|
||
|
//! Sets the scale from a Point. The point is put on the diagonal.
|
||
|
inline_ void SetScale(const Point& p) { m[0][0] = p.x; m[1][1] = p.y; m[2][2] = p.z; }
|
||
|
|
||
|
//! Sets the scale from floats. Values are put on the diagonal.
|
||
|
inline_ void SetScale(float sx, float sy, float sz) { m[0][0] = sx; m[1][1] = sy; m[2][2] = sz; }
|
||
|
|
||
|
//! Scales from a Point. Each row is multiplied by a component.
|
||
|
inline_ void Scale(const Point& p)
|
||
|
{
|
||
|
m[0][0] *= p.x; m[0][1] *= p.x; m[0][2] *= p.x;
|
||
|
m[1][0] *= p.y; m[1][1] *= p.y; m[1][2] *= p.y;
|
||
|
m[2][0] *= p.z; m[2][1] *= p.z; m[2][2] *= p.z;
|
||
|
}
|
||
|
|
||
|
//! Scales from floats. Each row is multiplied by a value.
|
||
|
inline_ void Scale(float sx, float sy, float sz)
|
||
|
{
|
||
|
m[0][0] *= sx; m[0][1] *= sx; m[0][2] *= sx;
|
||
|
m[1][0] *= sy; m[1][1] *= sy; m[1][2] *= sy;
|
||
|
m[2][0] *= sz; m[2][1] *= sz; m[2][2] *= sz;
|
||
|
}
|
||
|
|
||
|
//! Copy from a Matrix3x3
|
||
|
inline_ void Copy(const Matrix3x3& source) { CopyMemory(m, source.m, 9*sizeof(float)); }
|
||
|
|
||
|
// Row-column access
|
||
|
//! Returns a row.
|
||
|
inline_ void GetRow(const udword r, Point& p) const { p.x = m[r][0]; p.y = m[r][1]; p.z = m[r][2]; }
|
||
|
//! Returns a row.
|
||
|
inline_ const Point& GetRow(const udword r) const { return *(const Point*)&m[r][0]; }
|
||
|
//! Returns a row.
|
||
|
inline_ Point& GetRow(const udword r) { return *(Point*)&m[r][0]; }
|
||
|
//! Sets a row.
|
||
|
inline_ void SetRow(const udword r, const Point& p) { m[r][0] = p.x; m[r][1] = p.y; m[r][2] = p.z; }
|
||
|
//! Returns a column.
|
||
|
inline_ void GetCol(const udword c, Point& p) const { p.x = m[0][c]; p.y = m[1][c]; p.z = m[2][c]; }
|
||
|
//! Sets a column.
|
||
|
inline_ void SetCol(const udword c, const Point& p) { m[0][c] = p.x; m[1][c] = p.y; m[2][c] = p.z; }
|
||
|
|
||
|
//! Computes the trace. The trace is the sum of the 3 diagonal components.
|
||
|
inline_ float Trace() const { return m[0][0] + m[1][1] + m[2][2]; }
|
||
|
//! Clears the matrix.
|
||
|
inline_ void Zero() { ZeroMemory(&m, sizeof(m)); }
|
||
|
//! Sets the identity matrix.
|
||
|
inline_ void Identity() { Zero(); m[0][0] = m[1][1] = m[2][2] = 1.0f; }
|
||
|
//! Checks for identity
|
||
|
inline_ bool IsIdentity() const
|
||
|
{
|
||
|
if(IR(m[0][0])!=IEEE_1_0) return false;
|
||
|
if(IR(m[0][1])!=0) return false;
|
||
|
if(IR(m[0][2])!=0) return false;
|
||
|
|
||
|
if(IR(m[1][0])!=0) return false;
|
||
|
if(IR(m[1][1])!=IEEE_1_0) return false;
|
||
|
if(IR(m[1][2])!=0) return false;
|
||
|
|
||
|
if(IR(m[2][0])!=0) return false;
|
||
|
if(IR(m[2][1])!=0) return false;
|
||
|
if(IR(m[2][2])!=IEEE_1_0) return false;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
//! Checks matrix validity
|
||
|
inline_ BOOL IsValid() const
|
||
|
{
|
||
|
for(udword j=0;j<3;j++)
|
||
|
{
|
||
|
for(udword i=0;i<3;i++)
|
||
|
{
|
||
|
if(!IsValidFloat(m[j][i])) return FALSE;
|
||
|
}
|
||
|
}
|
||
|
return TRUE;
|
||
|
}
|
||
|
|
||
|
//! Makes a skew-symmetric matrix (a.k.a. Star(*) Matrix)
|
||
|
//! [ 0.0 -a.z a.y ]
|
||
|
//! [ a.z 0.0 -a.x ]
|
||
|
//! [ -a.y a.x 0.0 ]
|
||
|
//! This is also called a "cross matrix" since for any vectors A and B,
|
||
|
//! A^B = Skew(A) * B = - B * Skew(A);
|
||
|
inline_ void SkewSymmetric(const Point& a)
|
||
|
{
|
||
|
m[0][0] = 0.0f;
|
||
|
m[0][1] = -a.z;
|
||
|
m[0][2] = a.y;
|
||
|
|
||
|
m[1][0] = a.z;
|
||
|
m[1][1] = 0.0f;
|
||
|
m[1][2] = -a.x;
|
||
|
|
||
|
m[2][0] = -a.y;
|
||
|
m[2][1] = a.x;
|
||
|
m[2][2] = 0.0f;
|
||
|
}
|
||
|
|
||
|
//! Negates the matrix
|
||
|
inline_ void Neg()
|
||
|
{
|
||
|
m[0][0] = -m[0][0]; m[0][1] = -m[0][1]; m[0][2] = -m[0][2];
|
||
|
m[1][0] = -m[1][0]; m[1][1] = -m[1][1]; m[1][2] = -m[1][2];
|
||
|
m[2][0] = -m[2][0]; m[2][1] = -m[2][1]; m[2][2] = -m[2][2];
|
||
|
}
|
||
|
|
||
|
//! Neg from another matrix
|
||
|
inline_ void Neg(const Matrix3x3& mat)
|
||
|
{
|
||
|
m[0][0] = -mat.m[0][0]; m[0][1] = -mat.m[0][1]; m[0][2] = -mat.m[0][2];
|
||
|
m[1][0] = -mat.m[1][0]; m[1][1] = -mat.m[1][1]; m[1][2] = -mat.m[1][2];
|
||
|
m[2][0] = -mat.m[2][0]; m[2][1] = -mat.m[2][1]; m[2][2] = -mat.m[2][2];
|
||
|
}
|
||
|
|
||
|
//! Add another matrix
|
||
|
inline_ void Add(const Matrix3x3& mat)
|
||
|
{
|
||
|
m[0][0] += mat.m[0][0]; m[0][1] += mat.m[0][1]; m[0][2] += mat.m[0][2];
|
||
|
m[1][0] += mat.m[1][0]; m[1][1] += mat.m[1][1]; m[1][2] += mat.m[1][2];
|
||
|
m[2][0] += mat.m[2][0]; m[2][1] += mat.m[2][1]; m[2][2] += mat.m[2][2];
|
||
|
}
|
||
|
|
||
|
//! Sub another matrix
|
||
|
inline_ void Sub(const Matrix3x3& mat)
|
||
|
{
|
||
|
m[0][0] -= mat.m[0][0]; m[0][1] -= mat.m[0][1]; m[0][2] -= mat.m[0][2];
|
||
|
m[1][0] -= mat.m[1][0]; m[1][1] -= mat.m[1][1]; m[1][2] -= mat.m[1][2];
|
||
|
m[2][0] -= mat.m[2][0]; m[2][1] -= mat.m[2][1]; m[2][2] -= mat.m[2][2];
|
||
|
}
|
||
|
//! Mac
|
||
|
inline_ void Mac(const Matrix3x3& a, const Matrix3x3& b, float s)
|
||
|
{
|
||
|
m[0][0] = a.m[0][0] + b.m[0][0] * s;
|
||
|
m[0][1] = a.m[0][1] + b.m[0][1] * s;
|
||
|
m[0][2] = a.m[0][2] + b.m[0][2] * s;
|
||
|
|
||
|
m[1][0] = a.m[1][0] + b.m[1][0] * s;
|
||
|
m[1][1] = a.m[1][1] + b.m[1][1] * s;
|
||
|
m[1][2] = a.m[1][2] + b.m[1][2] * s;
|
||
|
|
||
|
m[2][0] = a.m[2][0] + b.m[2][0] * s;
|
||
|
m[2][1] = a.m[2][1] + b.m[2][1] * s;
|
||
|
m[2][2] = a.m[2][2] + b.m[2][2] * s;
|
||
|
}
|
||
|
//! Mac
|
||
|
inline_ void Mac(const Matrix3x3& a, float s)
|
||
|
{
|
||
|
m[0][0] += a.m[0][0] * s; m[0][1] += a.m[0][1] * s; m[0][2] += a.m[0][2] * s;
|
||
|
m[1][0] += a.m[1][0] * s; m[1][1] += a.m[1][1] * s; m[1][2] += a.m[1][2] * s;
|
||
|
m[2][0] += a.m[2][0] * s; m[2][1] += a.m[2][1] * s; m[2][2] += a.m[2][2] * s;
|
||
|
}
|
||
|
|
||
|
//! this = A * s
|
||
|
inline_ void Mult(const Matrix3x3& a, float s)
|
||
|
{
|
||
|
m[0][0] = a.m[0][0] * s; m[0][1] = a.m[0][1] * s; m[0][2] = a.m[0][2] * s;
|
||
|
m[1][0] = a.m[1][0] * s; m[1][1] = a.m[1][1] * s; m[1][2] = a.m[1][2] * s;
|
||
|
m[2][0] = a.m[2][0] * s; m[2][1] = a.m[2][1] * s; m[2][2] = a.m[2][2] * s;
|
||
|
}
|
||
|
|
||
|
inline_ void Add(const Matrix3x3& a, const Matrix3x3& b)
|
||
|
{
|
||
|
m[0][0] = a.m[0][0] + b.m[0][0]; m[0][1] = a.m[0][1] + b.m[0][1]; m[0][2] = a.m[0][2] + b.m[0][2];
|
||
|
m[1][0] = a.m[1][0] + b.m[1][0]; m[1][1] = a.m[1][1] + b.m[1][1]; m[1][2] = a.m[1][2] + b.m[1][2];
|
||
|
m[2][0] = a.m[2][0] + b.m[2][0]; m[2][1] = a.m[2][1] + b.m[2][1]; m[2][2] = a.m[2][2] + b.m[2][2];
|
||
|
}
|
||
|
|
||
|
inline_ void Sub(const Matrix3x3& a, const Matrix3x3& b)
|
||
|
{
|
||
|
m[0][0] = a.m[0][0] - b.m[0][0]; m[0][1] = a.m[0][1] - b.m[0][1]; m[0][2] = a.m[0][2] - b.m[0][2];
|
||
|
m[1][0] = a.m[1][0] - b.m[1][0]; m[1][1] = a.m[1][1] - b.m[1][1]; m[1][2] = a.m[1][2] - b.m[1][2];
|
||
|
m[2][0] = a.m[2][0] - b.m[2][0]; m[2][1] = a.m[2][1] - b.m[2][1]; m[2][2] = a.m[2][2] - b.m[2][2];
|
||
|
}
|
||
|
|
||
|
//! this = a * b
|
||
|
inline_ void Mult(const Matrix3x3& a, const Matrix3x3& b)
|
||
|
{
|
||
|
m[0][0] = a.m[0][0] * b.m[0][0] + a.m[0][1] * b.m[1][0] + a.m[0][2] * b.m[2][0];
|
||
|
m[0][1] = a.m[0][0] * b.m[0][1] + a.m[0][1] * b.m[1][1] + a.m[0][2] * b.m[2][1];
|
||
|
m[0][2] = a.m[0][0] * b.m[0][2] + a.m[0][1] * b.m[1][2] + a.m[0][2] * b.m[2][2];
|
||
|
m[1][0] = a.m[1][0] * b.m[0][0] + a.m[1][1] * b.m[1][0] + a.m[1][2] * b.m[2][0];
|
||
|
m[1][1] = a.m[1][0] * b.m[0][1] + a.m[1][1] * b.m[1][1] + a.m[1][2] * b.m[2][1];
|
||
|
m[1][2] = a.m[1][0] * b.m[0][2] + a.m[1][1] * b.m[1][2] + a.m[1][2] * b.m[2][2];
|
||
|
m[2][0] = a.m[2][0] * b.m[0][0] + a.m[2][1] * b.m[1][0] + a.m[2][2] * b.m[2][0];
|
||
|
m[2][1] = a.m[2][0] * b.m[0][1] + a.m[2][1] * b.m[1][1] + a.m[2][2] * b.m[2][1];
|
||
|
m[2][2] = a.m[2][0] * b.m[0][2] + a.m[2][1] * b.m[1][2] + a.m[2][2] * b.m[2][2];
|
||
|
}
|
||
|
|
||
|
//! this = transpose(a) * b
|
||
|
inline_ void MultAtB(const Matrix3x3& a, const Matrix3x3& b)
|
||
|
{
|
||
|
m[0][0] = a.m[0][0] * b.m[0][0] + a.m[1][0] * b.m[1][0] + a.m[2][0] * b.m[2][0];
|
||
|
m[0][1] = a.m[0][0] * b.m[0][1] + a.m[1][0] * b.m[1][1] + a.m[2][0] * b.m[2][1];
|
||
|
m[0][2] = a.m[0][0] * b.m[0][2] + a.m[1][0] * b.m[1][2] + a.m[2][0] * b.m[2][2];
|
||
|
m[1][0] = a.m[0][1] * b.m[0][0] + a.m[1][1] * b.m[1][0] + a.m[2][1] * b.m[2][0];
|
||
|
m[1][1] = a.m[0][1] * b.m[0][1] + a.m[1][1] * b.m[1][1] + a.m[2][1] * b.m[2][1];
|
||
|
m[1][2] = a.m[0][1] * b.m[0][2] + a.m[1][1] * b.m[1][2] + a.m[2][1] * b.m[2][2];
|
||
|
m[2][0] = a.m[0][2] * b.m[0][0] + a.m[1][2] * b.m[1][0] + a.m[2][2] * b.m[2][0];
|
||
|
m[2][1] = a.m[0][2] * b.m[0][1] + a.m[1][2] * b.m[1][1] + a.m[2][2] * b.m[2][1];
|
||
|
m[2][2] = a.m[0][2] * b.m[0][2] + a.m[1][2] * b.m[1][2] + a.m[2][2] * b.m[2][2];
|
||
|
}
|
||
|
|
||
|
//! this = a * transpose(b)
|
||
|
inline_ void MultABt(const Matrix3x3& a, const Matrix3x3& b)
|
||
|
{
|
||
|
m[0][0] = a.m[0][0] * b.m[0][0] + a.m[0][1] * b.m[0][1] + a.m[0][2] * b.m[0][2];
|
||
|
m[0][1] = a.m[0][0] * b.m[1][0] + a.m[0][1] * b.m[1][1] + a.m[0][2] * b.m[1][2];
|
||
|
m[0][2] = a.m[0][0] * b.m[2][0] + a.m[0][1] * b.m[2][1] + a.m[0][2] * b.m[2][2];
|
||
|
m[1][0] = a.m[1][0] * b.m[0][0] + a.m[1][1] * b.m[0][1] + a.m[1][2] * b.m[0][2];
|
||
|
m[1][1] = a.m[1][0] * b.m[1][0] + a.m[1][1] * b.m[1][1] + a.m[1][2] * b.m[1][2];
|
||
|
m[1][2] = a.m[1][0] * b.m[2][0] + a.m[1][1] * b.m[2][1] + a.m[1][2] * b.m[2][2];
|
||
|
m[2][0] = a.m[2][0] * b.m[0][0] + a.m[2][1] * b.m[0][1] + a.m[2][2] * b.m[0][2];
|
||
|
m[2][1] = a.m[2][0] * b.m[1][0] + a.m[2][1] * b.m[1][1] + a.m[2][2] * b.m[1][2];
|
||
|
m[2][2] = a.m[2][0] * b.m[2][0] + a.m[2][1] * b.m[2][1] + a.m[2][2] * b.m[2][2];
|
||
|
}
|
||
|
|
||
|
//! Makes a rotation matrix mapping vector "from" to vector "to".
|
||
|
Matrix3x3& FromTo(const Point& from, const Point& to);
|
||
|
|
||
|
//! Set a rotation matrix around the X axis.
|
||
|
//! 1 0 0
|
||
|
//! RX = 0 cx sx
|
||
|
//! 0 -sx cx
|
||
|
void RotX(float angle);
|
||
|
//! Set a rotation matrix around the Y axis.
|
||
|
//! cy 0 -sy
|
||
|
//! RY = 0 1 0
|
||
|
//! sy 0 cy
|
||
|
void RotY(float angle);
|
||
|
//! Set a rotation matrix around the Z axis.
|
||
|
//! cz sz 0
|
||
|
//! RZ = -sz cz 0
|
||
|
//! 0 0 1
|
||
|
void RotZ(float angle);
|
||
|
//! cy sx.sy -sy.cx
|
||
|
//! RY.RX 0 cx sx
|
||
|
//! sy -sx.cy cx.cy
|
||
|
void RotYX(float y, float x);
|
||
|
|
||
|
//! Make a rotation matrix about an arbitrary axis
|
||
|
Matrix3x3& Rot(float angle, const Point& axis);
|
||
|
|
||
|
//! Transpose the matrix.
|
||
|
void Transpose()
|
||
|
{
|
||
|
IR(m[1][0]) ^= IR(m[0][1]); IR(m[0][1]) ^= IR(m[1][0]); IR(m[1][0]) ^= IR(m[0][1]);
|
||
|
IR(m[2][0]) ^= IR(m[0][2]); IR(m[0][2]) ^= IR(m[2][0]); IR(m[2][0]) ^= IR(m[0][2]);
|
||
|
IR(m[2][1]) ^= IR(m[1][2]); IR(m[1][2]) ^= IR(m[2][1]); IR(m[2][1]) ^= IR(m[1][2]);
|
||
|
}
|
||
|
|
||
|
//! this = Transpose(a)
|
||
|
void Transpose(const Matrix3x3& a)
|
||
|
{
|
||
|
m[0][0] = a.m[0][0]; m[0][1] = a.m[1][0]; m[0][2] = a.m[2][0];
|
||
|
m[1][0] = a.m[0][1]; m[1][1] = a.m[1][1]; m[1][2] = a.m[2][1];
|
||
|
m[2][0] = a.m[0][2]; m[2][1] = a.m[1][2]; m[2][2] = a.m[2][2];
|
||
|
}
|
||
|
|
||
|
//! Compute the determinant of the matrix. We use the rule of Sarrus.
|
||
|
float Determinant() const
|
||
|
{
|
||
|
return (m[0][0]*m[1][1]*m[2][2] + m[0][1]*m[1][2]*m[2][0] + m[0][2]*m[1][0]*m[2][1])
|
||
|
- (m[2][0]*m[1][1]*m[0][2] + m[2][1]*m[1][2]*m[0][0] + m[2][2]*m[1][0]*m[0][1]);
|
||
|
}
|
||
|
/*
|
||
|
//! Compute a cofactor. Used for matrix inversion.
|
||
|
float CoFactor(ubyte row, ubyte column) const
|
||
|
{
|
||
|
static sdword gIndex[3+2] = { 0, 1, 2, 0, 1 };
|
||
|
return (m[gIndex[row+1]][gIndex[column+1]]*m[gIndex[row+2]][gIndex[column+2]] - m[gIndex[row+2]][gIndex[column+1]]*m[gIndex[row+1]][gIndex[column+2]]);
|
||
|
}
|
||
|
*/
|
||
|
//! Invert the matrix. Determinant must be different from zero, else matrix can't be inverted.
|
||
|
Matrix3x3& Invert()
|
||
|
{
|
||
|
float Det = Determinant(); // Must be !=0
|
||
|
float OneOverDet = 1.0f / Det;
|
||
|
|
||
|
Matrix3x3 Temp;
|
||
|
Temp.m[0][0] = +(m[1][1] * m[2][2] - m[2][1] * m[1][2]) * OneOverDet;
|
||
|
Temp.m[1][0] = -(m[1][0] * m[2][2] - m[2][0] * m[1][2]) * OneOverDet;
|
||
|
Temp.m[2][0] = +(m[1][0] * m[2][1] - m[2][0] * m[1][1]) * OneOverDet;
|
||
|
Temp.m[0][1] = -(m[0][1] * m[2][2] - m[2][1] * m[0][2]) * OneOverDet;
|
||
|
Temp.m[1][1] = +(m[0][0] * m[2][2] - m[2][0] * m[0][2]) * OneOverDet;
|
||
|
Temp.m[2][1] = -(m[0][0] * m[2][1] - m[2][0] * m[0][1]) * OneOverDet;
|
||
|
Temp.m[0][2] = +(m[0][1] * m[1][2] - m[1][1] * m[0][2]) * OneOverDet;
|
||
|
Temp.m[1][2] = -(m[0][0] * m[1][2] - m[1][0] * m[0][2]) * OneOverDet;
|
||
|
Temp.m[2][2] = +(m[0][0] * m[1][1] - m[1][0] * m[0][1]) * OneOverDet;
|
||
|
|
||
|
*this = Temp;
|
||
|
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
Matrix3x3& Normalize();
|
||
|
|
||
|
//! this = exp(a)
|
||
|
Matrix3x3& Exp(const Matrix3x3& a);
|
||
|
|
||
|
void FromQuat(const Quat &q);
|
||
|
void FromQuatL2(const Quat &q, float l2);
|
||
|
|
||
|
// Arithmetic operators
|
||
|
//! Operator for Matrix3x3 Plus = Matrix3x3 + Matrix3x3;
|
||
|
inline_ Matrix3x3 operator+(const Matrix3x3& mat) const
|
||
|
{
|
||
|
return Matrix3x3(
|
||
|
m[0][0] + mat.m[0][0], m[0][1] + mat.m[0][1], m[0][2] + mat.m[0][2],
|
||
|
m[1][0] + mat.m[1][0], m[1][1] + mat.m[1][1], m[1][2] + mat.m[1][2],
|
||
|
m[2][0] + mat.m[2][0], m[2][1] + mat.m[2][1], m[2][2] + mat.m[2][2]);
|
||
|
}
|
||
|
|
||
|
//! Operator for Matrix3x3 Minus = Matrix3x3 - Matrix3x3;
|
||
|
inline_ Matrix3x3 operator-(const Matrix3x3& mat) const
|
||
|
{
|
||
|
return Matrix3x3(
|
||
|
m[0][0] - mat.m[0][0], m[0][1] - mat.m[0][1], m[0][2] - mat.m[0][2],
|
||
|
m[1][0] - mat.m[1][0], m[1][1] - mat.m[1][1], m[1][2] - mat.m[1][2],
|
||
|
m[2][0] - mat.m[2][0], m[2][1] - mat.m[2][1], m[2][2] - mat.m[2][2]);
|
||
|
}
|
||
|
|
||
|
//! Operator for Matrix3x3 Mul = Matrix3x3 * Matrix3x3;
|
||
|
inline_ Matrix3x3 operator*(const Matrix3x3& mat) const
|
||
|
{
|
||
|
return Matrix3x3(
|
||
|
m[0][0]*mat.m[0][0] + m[0][1]*mat.m[1][0] + m[0][2]*mat.m[2][0],
|
||
|
m[0][0]*mat.m[0][1] + m[0][1]*mat.m[1][1] + m[0][2]*mat.m[2][1],
|
||
|
m[0][0]*mat.m[0][2] + m[0][1]*mat.m[1][2] + m[0][2]*mat.m[2][2],
|
||
|
|
||
|
m[1][0]*mat.m[0][0] + m[1][1]*mat.m[1][0] + m[1][2]*mat.m[2][0],
|
||
|
m[1][0]*mat.m[0][1] + m[1][1]*mat.m[1][1] + m[1][2]*mat.m[2][1],
|
||
|
m[1][0]*mat.m[0][2] + m[1][1]*mat.m[1][2] + m[1][2]*mat.m[2][2],
|
||
|
|
||
|
m[2][0]*mat.m[0][0] + m[2][1]*mat.m[1][0] + m[2][2]*mat.m[2][0],
|
||
|
m[2][0]*mat.m[0][1] + m[2][1]*mat.m[1][1] + m[2][2]*mat.m[2][1],
|
||
|
m[2][0]*mat.m[0][2] + m[2][1]*mat.m[1][2] + m[2][2]*mat.m[2][2]);
|
||
|
}
|
||
|
|
||
|
//! Operator for Point Mul = Matrix3x3 * Point;
|
||
|
inline_ Point operator*(const Point& v) const { return Point(GetRow(0)|v, GetRow(1)|v, GetRow(2)|v); }
|
||
|
|
||
|
//! Operator for Matrix3x3 Mul = Matrix3x3 * float;
|
||
|
inline_ Matrix3x3 operator*(float s) const
|
||
|
{
|
||
|
return Matrix3x3(
|
||
|
m[0][0]*s, m[0][1]*s, m[0][2]*s,
|
||
|
m[1][0]*s, m[1][1]*s, m[1][2]*s,
|
||
|
m[2][0]*s, m[2][1]*s, m[2][2]*s);
|
||
|
}
|
||
|
|
||
|
//! Operator for Matrix3x3 Mul = float * Matrix3x3;
|
||
|
inline_ friend Matrix3x3 operator*(float s, const Matrix3x3& mat)
|
||
|
{
|
||
|
return Matrix3x3(
|
||
|
s*mat.m[0][0], s*mat.m[0][1], s*mat.m[0][2],
|
||
|
s*mat.m[1][0], s*mat.m[1][1], s*mat.m[1][2],
|
||
|
s*mat.m[2][0], s*mat.m[2][1], s*mat.m[2][2]);
|
||
|
}
|
||
|
|
||
|
//! Operator for Matrix3x3 Div = Matrix3x3 / float;
|
||
|
inline_ Matrix3x3 operator/(float s) const
|
||
|
{
|
||
|
if (s) s = 1.0f / s;
|
||
|
return Matrix3x3(
|
||
|
m[0][0]*s, m[0][1]*s, m[0][2]*s,
|
||
|
m[1][0]*s, m[1][1]*s, m[1][2]*s,
|
||
|
m[2][0]*s, m[2][1]*s, m[2][2]*s);
|
||
|
}
|
||
|
|
||
|
//! Operator for Matrix3x3 Div = float / Matrix3x3;
|
||
|
inline_ friend Matrix3x3 operator/(float s, const Matrix3x3& mat)
|
||
|
{
|
||
|
return Matrix3x3(
|
||
|
s/mat.m[0][0], s/mat.m[0][1], s/mat.m[0][2],
|
||
|
s/mat.m[1][0], s/mat.m[1][1], s/mat.m[1][2],
|
||
|
s/mat.m[2][0], s/mat.m[2][1], s/mat.m[2][2]);
|
||
|
}
|
||
|
|
||
|
//! Operator for Matrix3x3 += Matrix3x3
|
||
|
inline_ Matrix3x3& operator+=(const Matrix3x3& mat)
|
||
|
{
|
||
|
m[0][0] += mat.m[0][0]; m[0][1] += mat.m[0][1]; m[0][2] += mat.m[0][2];
|
||
|
m[1][0] += mat.m[1][0]; m[1][1] += mat.m[1][1]; m[1][2] += mat.m[1][2];
|
||
|
m[2][0] += mat.m[2][0]; m[2][1] += mat.m[2][1]; m[2][2] += mat.m[2][2];
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
//! Operator for Matrix3x3 -= Matrix3x3
|
||
|
inline_ Matrix3x3& operator-=(const Matrix3x3& mat)
|
||
|
{
|
||
|
m[0][0] -= mat.m[0][0]; m[0][1] -= mat.m[0][1]; m[0][2] -= mat.m[0][2];
|
||
|
m[1][0] -= mat.m[1][0]; m[1][1] -= mat.m[1][1]; m[1][2] -= mat.m[1][2];
|
||
|
m[2][0] -= mat.m[2][0]; m[2][1] -= mat.m[2][1]; m[2][2] -= mat.m[2][2];
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
//! Operator for Matrix3x3 *= Matrix3x3
|
||
|
inline_ Matrix3x3& operator*=(const Matrix3x3& mat)
|
||
|
{
|
||
|
Point TempRow;
|
||
|
|
||
|
GetRow(0, TempRow);
|
||
|
m[0][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0];
|
||
|
m[0][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1];
|
||
|
m[0][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2];
|
||
|
|
||
|
GetRow(1, TempRow);
|
||
|
m[1][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0];
|
||
|
m[1][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1];
|
||
|
m[1][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2];
|
||
|
|
||
|
GetRow(2, TempRow);
|
||
|
m[2][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0];
|
||
|
m[2][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1];
|
||
|
m[2][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2];
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
//! Operator for Matrix3x3 *= float
|
||
|
inline_ Matrix3x3& operator*=(float s)
|
||
|
{
|
||
|
m[0][0] *= s; m[0][1] *= s; m[0][2] *= s;
|
||
|
m[1][0] *= s; m[1][1] *= s; m[1][2] *= s;
|
||
|
m[2][0] *= s; m[2][1] *= s; m[2][2] *= s;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
//! Operator for Matrix3x3 /= float
|
||
|
inline_ Matrix3x3& operator/=(float s)
|
||
|
{
|
||
|
if (s) s = 1.0f / s;
|
||
|
m[0][0] *= s; m[0][1] *= s; m[0][2] *= s;
|
||
|
m[1][0] *= s; m[1][1] *= s; m[1][2] *= s;
|
||
|
m[2][0] *= s; m[2][1] *= s; m[2][2] *= s;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
// Cast operators
|
||
|
//! Cast a Matrix3x3 to a Matrix4x4.
|
||
|
operator Matrix4x4() const;
|
||
|
//! Cast a Matrix3x3 to a Quat.
|
||
|
operator Quat() const;
|
||
|
|
||
|
inline_ const Point& operator[](int row) const { return *(const Point*)&m[row][0]; }
|
||
|
inline_ Point& operator[](int row) { return *(Point*)&m[row][0]; }
|
||
|
|
||
|
public:
|
||
|
|
||
|
float m[3][3];
|
||
|
};
|
||
|
|
||
|
#endif // __ICEMATRIX3X3_H__
|
||
|
|