Added script which generates star positions.
This commit is contained in:
parent
376c92d9b0
commit
5b5b4a8676
261
math-scripts/poisson.py
Normal file
261
math-scripts/poisson.py
Normal file
@ -0,0 +1,261 @@
|
|||||||
|
from __future__ import division
|
||||||
|
import numpy as np
|
||||||
|
import math
|
||||||
|
import scipy.spatial.distance
|
||||||
|
from mpl_toolkits.mplot3d import Axes3D
|
||||||
|
|
||||||
|
def random_point_disk(num_points = 1):
|
||||||
|
alpha = np.random.random(num_points) * math.pi * 2.0
|
||||||
|
radius = np.sqrt(np.random.random(num_points))
|
||||||
|
x = np.cos(alpha) * radius
|
||||||
|
y = np.sin(alpha) * radius
|
||||||
|
return np.dstack((x,y))[0]
|
||||||
|
|
||||||
|
def random_point_sphere(num_points = 1):
|
||||||
|
theta = np.random.random(num_points) * math.pi * 2.0
|
||||||
|
phi = np.arccos(2.0 * np.random.random(num_points) - 1.0)
|
||||||
|
radius = pow(np.random.random(num_points), 1.0 / 3.0)
|
||||||
|
x = np.cos(theta) * np.sin(phi) * radius
|
||||||
|
y = np.sin(theta) * np.sin(phi) * radius
|
||||||
|
z = np.cos(phi) * radius
|
||||||
|
return np.dstack((x,y,z))[0]
|
||||||
|
|
||||||
|
def random_point_line(num_points = 1):
|
||||||
|
x = np.random.random(num_points)
|
||||||
|
return np.reshape(x, (num_points,1))
|
||||||
|
|
||||||
|
def random_point_square(num_points = 1):
|
||||||
|
x = np.random.random(num_points)
|
||||||
|
y = np.random.random(num_points)
|
||||||
|
return np.dstack((x,y))[0]
|
||||||
|
|
||||||
|
def random_point_box(num_points = 1):
|
||||||
|
x = np.random.random(num_points)
|
||||||
|
y = np.random.random(num_points)
|
||||||
|
z = np.random.random(num_points)
|
||||||
|
return np.dstack((x,y,z))[0]
|
||||||
|
|
||||||
|
# if we only compare it doesn't matter if it's squared
|
||||||
|
def min_dist_squared(points, point):
|
||||||
|
diff = points - np.array([point])
|
||||||
|
return np.min(np.einsum('ij,ij->i',diff,diff))
|
||||||
|
|
||||||
|
class PoissonGenerator:
|
||||||
|
def __init__(self, num_dim, disk, repeatPattern, first_point_zero):
|
||||||
|
self.first_point_zero = first_point_zero
|
||||||
|
self.disk = disk
|
||||||
|
self.num_dim = num_dim
|
||||||
|
self.repeatPattern = repeatPattern and disk == False
|
||||||
|
self.num_perms = (3 ** self.num_dim) if self.repeatPattern else 1
|
||||||
|
|
||||||
|
if num_dim == 3:
|
||||||
|
self.zero_point = [0,0,0]
|
||||||
|
if disk == True:
|
||||||
|
self.random_point = random_point_sphere
|
||||||
|
else:
|
||||||
|
self.random_point = random_point_box
|
||||||
|
elif num_dim == 2:
|
||||||
|
self.zero_point = [0,0]
|
||||||
|
if disk == True:
|
||||||
|
self.random_point = random_point_disk
|
||||||
|
else:
|
||||||
|
self.random_point = random_point_square
|
||||||
|
else:
|
||||||
|
self.zero_point = [0]
|
||||||
|
self.random_point = random_point_line
|
||||||
|
|
||||||
|
def first_point(self):
|
||||||
|
if self.first_point_zero == True:
|
||||||
|
return np.array(self.zero_point)
|
||||||
|
return self.random_point(1)[0]
|
||||||
|
|
||||||
|
def find_next_point(self, current_points, iterations_per_point):
|
||||||
|
best_dist = 0
|
||||||
|
best_point = []
|
||||||
|
random_points = self.random_point(iterations_per_point)
|
||||||
|
for new_point in random_points:
|
||||||
|
dist = min_dist_squared(current_points, new_point)
|
||||||
|
if dist > best_dist:
|
||||||
|
best_dist = dist
|
||||||
|
best_point = new_point
|
||||||
|
return best_point
|
||||||
|
|
||||||
|
def permute_point(self, point):
|
||||||
|
out_array = np.array(point,ndmin = 2)
|
||||||
|
if not self.repeatPattern:
|
||||||
|
return out_array
|
||||||
|
|
||||||
|
if self.num_dim == 3:
|
||||||
|
for z in range(-1,2):
|
||||||
|
for y in range(-1,2):
|
||||||
|
for x in range(-1,2):
|
||||||
|
if y != 0 or x != 0 or z != 0:
|
||||||
|
perm_point = point+[x,y,z]
|
||||||
|
out_array = np.append(out_array, np.array(perm_point,ndmin = 2), axis = 0 )
|
||||||
|
elif self.num_dim == 2:
|
||||||
|
for y in range(-1,2):
|
||||||
|
for x in range(-1,2):
|
||||||
|
if y != 0 or x != 0:
|
||||||
|
perm_point = point+[x,y]
|
||||||
|
out_array = np.append(out_array, np.array(perm_point,ndmin = 2), axis = 0 )
|
||||||
|
else:
|
||||||
|
for x in range(-1,2):
|
||||||
|
if x != 0:
|
||||||
|
perm_point = point+[x]
|
||||||
|
out_array = np.append(out_array, np.array(perm_point,ndmin = 2), axis = 0 )
|
||||||
|
|
||||||
|
return out_array
|
||||||
|
|
||||||
|
def find_point_set(self, num_points, num_iter, iterations_per_point, rotations, progress_notification = None):
|
||||||
|
best_point_set = []
|
||||||
|
best_dist_avg = 0
|
||||||
|
self.rotations = 1
|
||||||
|
if self.disk and self.num_dim == 2:
|
||||||
|
rotations = max(rotations, 1)
|
||||||
|
self.rotations = rotations
|
||||||
|
|
||||||
|
for i in range(num_iter):
|
||||||
|
if progress_notification != None:
|
||||||
|
progress_notification(i / num_iter)
|
||||||
|
points = self.permute_point(self.first_point())
|
||||||
|
|
||||||
|
for i in range(num_points-1):
|
||||||
|
next_point = self.find_next_point(points, iterations_per_point)
|
||||||
|
points = np.append(points, self.permute_point(next_point), axis = 0)
|
||||||
|
|
||||||
|
current_set_dist = 0
|
||||||
|
|
||||||
|
if rotations > 1:
|
||||||
|
points_permuted = np.copy(points)
|
||||||
|
for rotation in range(1, rotations):
|
||||||
|
rot_angle = rotation * math.pi * 2.0 / rotations
|
||||||
|
s, c = math.sin(rot_angle), math.cos(rot_angle)
|
||||||
|
rot_matrix = np.matrix([[c, -s], [s, c]])
|
||||||
|
points_permuted = np.append(points_permuted, np.array(np.dot(points, rot_matrix)), axis = 0)
|
||||||
|
current_set_dist = np.min(scipy.spatial.distance.pdist(points_permuted))
|
||||||
|
else:
|
||||||
|
current_set_dist = np.min(scipy.spatial.distance.pdist(points))
|
||||||
|
|
||||||
|
if current_set_dist > best_dist_avg:
|
||||||
|
best_dist_avg = current_set_dist
|
||||||
|
best_point_set = points
|
||||||
|
return best_point_set[::self.num_perms,:]
|
||||||
|
|
||||||
|
def cache_sort(self, points, sorting_buckets):
|
||||||
|
if sorting_buckets < 1:
|
||||||
|
return points
|
||||||
|
if self.num_dim == 3:
|
||||||
|
points_discretized = np.floor(points * [sorting_buckets,-sorting_buckets, sorting_buckets])
|
||||||
|
indices_cache_space = np.array(points_discretized[:,2] * sorting_buckets * 4 + points_discretized[:,1] * sorting_buckets * 2 + points_discretized[:,0])
|
||||||
|
points = points[np.argsort(indices_cache_space)]
|
||||||
|
elif self.num_dim == 2:
|
||||||
|
points_discretized = np.floor(points * [sorting_buckets,-sorting_buckets])
|
||||||
|
indices_cache_space = np.array(points_discretized[:,1] * sorting_buckets * 2 + points_discretized[:,0])
|
||||||
|
points = points[np.argsort(indices_cache_space)]
|
||||||
|
else:
|
||||||
|
points_discretized = np.floor(points * [sorting_buckets])
|
||||||
|
indices_cache_space = np.array(points_discretized[:,0])
|
||||||
|
points = points[np.argsort(indices_cache_space)]
|
||||||
|
return points
|
||||||
|
|
||||||
|
def format_points_string(self, points):
|
||||||
|
types_hlsl = ["float", "float2", "float3"]
|
||||||
|
|
||||||
|
points_str_hlsl = "// hlsl array\n"
|
||||||
|
points_str_hlsl += "static const uint SAMPLE_NUM = " + str(points.size // self.num_dim) + ";\n"
|
||||||
|
points_str_hlsl += "static const " + types_hlsl[self.num_dim-1] + " POISSON_SAMPLES[SAMPLE_NUM] = \n{ \n"
|
||||||
|
|
||||||
|
points_str_cpp = "// C++ array\n"
|
||||||
|
points_str_cpp += "const int SAMPLE_NUM = " + str(points.size // self.num_dim) + ";\n"
|
||||||
|
points_str_cpp += "const float POISSON_SAMPLES[SAMPLE_NUM][" + str(self.num_dim) + "] = \n{ \n"
|
||||||
|
|
||||||
|
if self.num_dim == 3:
|
||||||
|
for p in points:
|
||||||
|
points_str_hlsl += "float3( " + str(p[0]) + "f, " + str(p[1]) + "f, " + str(p[2]) + "f ), \n"
|
||||||
|
points_str_cpp += str(p[0]) + "f, " + str(p[1]) + "f, " + str(p[2]) + "f, \n"
|
||||||
|
elif self.num_dim == 2:
|
||||||
|
for p in points:
|
||||||
|
points_str_hlsl += "float2( " + str(p[0]) + "f, " + str(p[1]) + "f ), \n"
|
||||||
|
points_str_cpp += str(p[0]) + "f, " + str(p[1]) + "f, \n"
|
||||||
|
else:
|
||||||
|
for p in points:
|
||||||
|
points_str_hlsl += str(p[0]) + "f, \n"
|
||||||
|
points_str_cpp += str(p[0]) + "f, \n"
|
||||||
|
|
||||||
|
points_str_hlsl += "};\n\n"
|
||||||
|
points_str_cpp += "};\n\n"
|
||||||
|
|
||||||
|
return points_str_hlsl + points_str_cpp
|
||||||
|
|
||||||
|
def generate_ui(self, fig, points):
|
||||||
|
num_points = points.size // self.num_dim
|
||||||
|
|
||||||
|
if self.num_dim == 3:
|
||||||
|
ax = fig.add_subplot(111, projection='3d')
|
||||||
|
if self.disk == True:
|
||||||
|
#less optimal, more readable
|
||||||
|
sphere_guide = [[0,0,0]]
|
||||||
|
num_guides = 30
|
||||||
|
for theta in np.linspace(0, 2.0 * math.pi, num_guides):
|
||||||
|
for phi in np.arccos(np.linspace(-1, 1.0, num_guides)):
|
||||||
|
x = np.cos(theta) * np.sin(phi)
|
||||||
|
y = np.sin(theta) * np.sin(phi)
|
||||||
|
z = np.cos(phi)
|
||||||
|
sphere_guide = np.append(sphere_guide, np.array([[x,y,z]],ndmin = 2), axis = 0)
|
||||||
|
ax.plot_wireframe(sphere_guide[1:,0], sphere_guide[1:,1], sphere_guide[1:,2])
|
||||||
|
ax.set_xlim(-1,1)
|
||||||
|
ax.set_ylim(-1,1)
|
||||||
|
ax.set_zlim(-1,1)
|
||||||
|
elif self.repeatPattern == True:
|
||||||
|
ax.scatter(points[:,0], points[:,1], points[:,2] + 1, c='b')
|
||||||
|
ax.scatter(points[:,0], points[:,1] + 1, points[:,2] + 1, c='b')
|
||||||
|
ax.scatter(points[:,0] + 1, points[:,1] + 1, points[:,2] + 1, c='b')
|
||||||
|
ax.scatter(points[:,0] + 1, points[:,1], points[:,2] + 1, c='b')
|
||||||
|
ax.scatter(points[:,0], points[:,1] + 1, points[:,2], c='b')
|
||||||
|
ax.scatter(points[:,0] + 1, points[:,1] + 1, points[:,2], c='b')
|
||||||
|
ax.scatter(points[:,0] + 1, points[:,1], points[:,2], c='b')
|
||||||
|
|
||||||
|
a = np.linspace(0, 2.0, 3)
|
||||||
|
b = np.linspace(0, 2.0, 3)
|
||||||
|
a, b = np.meshgrid(a,b)
|
||||||
|
ax.plot_wireframe(a, b, 1.0)
|
||||||
|
ax.plot_wireframe(a, 1.0, b)
|
||||||
|
ax.plot_wireframe(1.0, a, b)
|
||||||
|
|
||||||
|
ax.set_xlim(0,2)
|
||||||
|
ax.set_ylim(0,2)
|
||||||
|
ax.set_zlim(0,2)
|
||||||
|
|
||||||
|
else:
|
||||||
|
ax.set_xlim(0,1)
|
||||||
|
ax.set_ylim(0,1)
|
||||||
|
ax.set_zlim(0,1)
|
||||||
|
|
||||||
|
ax.scatter(points[:,0], points[:,1], points[:,2], c='r')
|
||||||
|
elif self.num_dim == 2:
|
||||||
|
ax = fig.add_subplot(111)
|
||||||
|
if self.disk == True:
|
||||||
|
param = np.linspace(0, 2.0 * math.pi, 1000)
|
||||||
|
x = np.cos(param)
|
||||||
|
y = np.sin(param)
|
||||||
|
ax.plot(x, y, 'b-')
|
||||||
|
elif self.repeatPattern == True:
|
||||||
|
ax.plot(points[:,0] + 1, points[:,1], 'bo')
|
||||||
|
ax.plot(points[:,0] + 1, points[:,1] + 1, 'bo')
|
||||||
|
ax.plot(points[:,0], points[:,1] + 1, 'bo')
|
||||||
|
if self.disk == False:
|
||||||
|
param = np.linspace(0, 2.0, 100)
|
||||||
|
ax.plot(param, [1] * 100, 'k')
|
||||||
|
ax.plot([1] * 100, param, 'k')
|
||||||
|
for rotation in range(1,self.rotations):
|
||||||
|
rot_angle = rotation * math.pi * 2.0 / self.rotations
|
||||||
|
s, c = math.sin(rot_angle), math.cos(rot_angle)
|
||||||
|
rot_matrix = np.matrix([[c, -s], [s, c]])
|
||||||
|
points_permuted = np.array(np.dot(points, rot_matrix))
|
||||||
|
ax.plot(points_permuted[:,0], points_permuted[:,1], 'bo')
|
||||||
|
ax.plot(points[:,0], points[:,1], 'ro')
|
||||||
|
else:
|
||||||
|
ax = fig.add_subplot(111)
|
||||||
|
ax.plot(points[:,0], [0] * num_points, 'ro')
|
||||||
|
if self.repeatPattern == True:
|
||||||
|
ax.plot(points[:,0] + 1, [0] * num_points, 'bo')
|
53
math-scripts/star-generator.py
Normal file
53
math-scripts/star-generator.py
Normal file
@ -0,0 +1,53 @@
|
|||||||
|
from __future__ import print_function
|
||||||
|
import numpy as np
|
||||||
|
import math
|
||||||
|
import poisson
|
||||||
|
import array
|
||||||
|
|
||||||
|
def main():
|
||||||
|
# user defined options
|
||||||
|
disk = True # this parameter defines if we look for Poisson-like distribution on a disk/sphere (center at 0, radius 1) or in a square/box (0-1 on x and y)
|
||||||
|
repeatPattern = True # this parameter defines if we look for "repeating" pattern so if we should maximize distances also with pattern repetitions
|
||||||
|
num_points = 2 # number of points we are looking for
|
||||||
|
num_iterations = 4 # number of iterations in which we take average minimum squared distances between points and try to maximize them
|
||||||
|
first_point_zero = False # should be first point zero (useful if we already have such sample) or random
|
||||||
|
iterations_per_point = 128 # iterations per point trying to look for a new point with larger distance
|
||||||
|
sorting_buckets = 0 # if this option is > 0, then sequence will be optimized for tiled cache locality in n x n tiles (x followed by y)
|
||||||
|
num_dim = 3 # 1, 2, 3 dimensional version
|
||||||
|
num_rotations = 1 # number of rotations of pattern to check against
|
||||||
|
|
||||||
|
|
||||||
|
poisson_generator = poisson.PoissonGenerator(num_dim, disk, repeatPattern, first_point_zero)
|
||||||
|
points = poisson_generator.find_point_set(num_points, num_iterations, iterations_per_point, num_rotations)
|
||||||
|
print(points)
|
||||||
|
print("")
|
||||||
|
print("")
|
||||||
|
print("")
|
||||||
|
#normalize vectors
|
||||||
|
norm_points = []
|
||||||
|
for vector in points:
|
||||||
|
norm_points.append(vector/np.linalg.norm(vector))
|
||||||
|
print(norm_points)
|
||||||
|
#ensure all vectors are pointing upwards
|
||||||
|
final_points = []
|
||||||
|
for vector in norm_points:
|
||||||
|
if np.dot(vector, [0,1,0]) < 0:
|
||||||
|
final_points.append(-vector)
|
||||||
|
else:
|
||||||
|
final_points.append(vector)
|
||||||
|
print("")
|
||||||
|
print("")
|
||||||
|
print("")
|
||||||
|
print(final_points)
|
||||||
|
print("")
|
||||||
|
print("")
|
||||||
|
print("")
|
||||||
|
#format output
|
||||||
|
print("vec3 starPositions[{}] = vec3[](".format(num_points))
|
||||||
|
for vector in final_points:
|
||||||
|
print(" vec3({}, {}, {}),".format(vector[0], vector[1], vector[2]))
|
||||||
|
print(");")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
Loading…
Reference in New Issue
Block a user