diff --git a/math-scripts/poisson.py b/math-scripts/poisson.py deleted file mode 100644 index cd64925..0000000 --- a/math-scripts/poisson.py +++ /dev/null @@ -1,261 +0,0 @@ -from __future__ import division -import numpy as np -import math -import scipy.spatial.distance -from mpl_toolkits.mplot3d import Axes3D - -def random_point_disk(num_points = 1): - alpha = np.random.random(num_points) * math.pi * 2.0 - radius = np.sqrt(np.random.random(num_points)) - x = np.cos(alpha) * radius - y = np.sin(alpha) * radius - return np.dstack((x,y))[0] - -def random_point_sphere(num_points = 1): - theta = np.random.random(num_points) * math.pi * 2.0 - phi = np.arccos(2.0 * np.random.random(num_points) - 1.0) - radius = pow(np.random.random(num_points), 1.0 / 3.0) - x = np.cos(theta) * np.sin(phi) * radius - y = np.sin(theta) * np.sin(phi) * radius - z = np.cos(phi) * radius - return np.dstack((x,y,z))[0] - -def random_point_line(num_points = 1): - x = np.random.random(num_points) - return np.reshape(x, (num_points,1)) - -def random_point_square(num_points = 1): - x = np.random.random(num_points) - y = np.random.random(num_points) - return np.dstack((x,y))[0] - -def random_point_box(num_points = 1): - x = np.random.random(num_points) - y = np.random.random(num_points) - z = np.random.random(num_points) - return np.dstack((x,y,z))[0] - -# if we only compare it doesn't matter if it's squared -def min_dist_squared(points, point): - diff = points - np.array([point]) - return np.min(np.einsum('ij,ij->i',diff,diff)) - -class PoissonGenerator: - def __init__(self, num_dim, disk, repeatPattern, first_point_zero): - self.first_point_zero = first_point_zero - self.disk = disk - self.num_dim = num_dim - self.repeatPattern = repeatPattern and disk == False - self.num_perms = (3 ** self.num_dim) if self.repeatPattern else 1 - - if num_dim == 3: - self.zero_point = [0,0,0] - if disk == True: - self.random_point = random_point_sphere - else: - self.random_point = random_point_box - elif num_dim == 2: - self.zero_point = [0,0] - if disk == True: - self.random_point = random_point_disk - else: - self.random_point = random_point_square - else: - self.zero_point = [0] - self.random_point = random_point_line - - def first_point(self): - if self.first_point_zero == True: - return np.array(self.zero_point) - return self.random_point(1)[0] - - def find_next_point(self, current_points, iterations_per_point): - best_dist = 0 - best_point = [] - random_points = self.random_point(iterations_per_point) - for new_point in random_points: - dist = min_dist_squared(current_points, new_point) - if dist > best_dist: - best_dist = dist - best_point = new_point - return best_point - - def permute_point(self, point): - out_array = np.array(point,ndmin = 2) - if not self.repeatPattern: - return out_array - - if self.num_dim == 3: - for z in range(-1,2): - for y in range(-1,2): - for x in range(-1,2): - if y != 0 or x != 0 or z != 0: - perm_point = point+[x,y,z] - out_array = np.append(out_array, np.array(perm_point,ndmin = 2), axis = 0 ) - elif self.num_dim == 2: - for y in range(-1,2): - for x in range(-1,2): - if y != 0 or x != 0: - perm_point = point+[x,y] - out_array = np.append(out_array, np.array(perm_point,ndmin = 2), axis = 0 ) - else: - for x in range(-1,2): - if x != 0: - perm_point = point+[x] - out_array = np.append(out_array, np.array(perm_point,ndmin = 2), axis = 0 ) - - return out_array - - def find_point_set(self, num_points, num_iter, iterations_per_point, rotations, progress_notification = None): - best_point_set = [] - best_dist_avg = 0 - self.rotations = 1 - if self.disk and self.num_dim == 2: - rotations = max(rotations, 1) - self.rotations = rotations - - for i in range(num_iter): - if progress_notification != None: - progress_notification(i / num_iter) - points = self.permute_point(self.first_point()) - - for i in range(num_points-1): - next_point = self.find_next_point(points, iterations_per_point) - points = np.append(points, self.permute_point(next_point), axis = 0) - - current_set_dist = 0 - - if rotations > 1: - points_permuted = np.copy(points) - for rotation in range(1, rotations): - rot_angle = rotation * math.pi * 2.0 / rotations - s, c = math.sin(rot_angle), math.cos(rot_angle) - rot_matrix = np.matrix([[c, -s], [s, c]]) - points_permuted = np.append(points_permuted, np.array(np.dot(points, rot_matrix)), axis = 0) - current_set_dist = np.min(scipy.spatial.distance.pdist(points_permuted)) - else: - current_set_dist = np.min(scipy.spatial.distance.pdist(points)) - - if current_set_dist > best_dist_avg: - best_dist_avg = current_set_dist - best_point_set = points - return best_point_set[::self.num_perms,:] - - def cache_sort(self, points, sorting_buckets): - if sorting_buckets < 1: - return points - if self.num_dim == 3: - points_discretized = np.floor(points * [sorting_buckets,-sorting_buckets, sorting_buckets]) - indices_cache_space = np.array(points_discretized[:,2] * sorting_buckets * 4 + points_discretized[:,1] * sorting_buckets * 2 + points_discretized[:,0]) - points = points[np.argsort(indices_cache_space)] - elif self.num_dim == 2: - points_discretized = np.floor(points * [sorting_buckets,-sorting_buckets]) - indices_cache_space = np.array(points_discretized[:,1] * sorting_buckets * 2 + points_discretized[:,0]) - points = points[np.argsort(indices_cache_space)] - else: - points_discretized = np.floor(points * [sorting_buckets]) - indices_cache_space = np.array(points_discretized[:,0]) - points = points[np.argsort(indices_cache_space)] - return points - - def format_points_string(self, points): - types_hlsl = ["float", "float2", "float3"] - - points_str_hlsl = "// hlsl array\n" - points_str_hlsl += "static const uint SAMPLE_NUM = " + str(points.size // self.num_dim) + ";\n" - points_str_hlsl += "static const " + types_hlsl[self.num_dim-1] + " POISSON_SAMPLES[SAMPLE_NUM] = \n{ \n" - - points_str_cpp = "// C++ array\n" - points_str_cpp += "const int SAMPLE_NUM = " + str(points.size // self.num_dim) + ";\n" - points_str_cpp += "const float POISSON_SAMPLES[SAMPLE_NUM][" + str(self.num_dim) + "] = \n{ \n" - - if self.num_dim == 3: - for p in points: - points_str_hlsl += "float3( " + str(p[0]) + "f, " + str(p[1]) + "f, " + str(p[2]) + "f ), \n" - points_str_cpp += str(p[0]) + "f, " + str(p[1]) + "f, " + str(p[2]) + "f, \n" - elif self.num_dim == 2: - for p in points: - points_str_hlsl += "float2( " + str(p[0]) + "f, " + str(p[1]) + "f ), \n" - points_str_cpp += str(p[0]) + "f, " + str(p[1]) + "f, \n" - else: - for p in points: - points_str_hlsl += str(p[0]) + "f, \n" - points_str_cpp += str(p[0]) + "f, \n" - - points_str_hlsl += "};\n\n" - points_str_cpp += "};\n\n" - - return points_str_hlsl + points_str_cpp - - def generate_ui(self, fig, points): - num_points = points.size // self.num_dim - - if self.num_dim == 3: - ax = fig.add_subplot(111, projection='3d') - if self.disk == True: - #less optimal, more readable - sphere_guide = [[0,0,0]] - num_guides = 30 - for theta in np.linspace(0, 2.0 * math.pi, num_guides): - for phi in np.arccos(np.linspace(-1, 1.0, num_guides)): - x = np.cos(theta) * np.sin(phi) - y = np.sin(theta) * np.sin(phi) - z = np.cos(phi) - sphere_guide = np.append(sphere_guide, np.array([[x,y,z]],ndmin = 2), axis = 0) - ax.plot_wireframe(sphere_guide[1:,0], sphere_guide[1:,1], sphere_guide[1:,2]) - ax.set_xlim(-1,1) - ax.set_ylim(-1,1) - ax.set_zlim(-1,1) - elif self.repeatPattern == True: - ax.scatter(points[:,0], points[:,1], points[:,2] + 1, c='b') - ax.scatter(points[:,0], points[:,1] + 1, points[:,2] + 1, c='b') - ax.scatter(points[:,0] + 1, points[:,1] + 1, points[:,2] + 1, c='b') - ax.scatter(points[:,0] + 1, points[:,1], points[:,2] + 1, c='b') - ax.scatter(points[:,0], points[:,1] + 1, points[:,2], c='b') - ax.scatter(points[:,0] + 1, points[:,1] + 1, points[:,2], c='b') - ax.scatter(points[:,0] + 1, points[:,1], points[:,2], c='b') - - a = np.linspace(0, 2.0, 3) - b = np.linspace(0, 2.0, 3) - a, b = np.meshgrid(a,b) - ax.plot_wireframe(a, b, 1.0) - ax.plot_wireframe(a, 1.0, b) - ax.plot_wireframe(1.0, a, b) - - ax.set_xlim(0,2) - ax.set_ylim(0,2) - ax.set_zlim(0,2) - - else: - ax.set_xlim(0,1) - ax.set_ylim(0,1) - ax.set_zlim(0,1) - - ax.scatter(points[:,0], points[:,1], points[:,2], c='r') - elif self.num_dim == 2: - ax = fig.add_subplot(111) - if self.disk == True: - param = np.linspace(0, 2.0 * math.pi, 1000) - x = np.cos(param) - y = np.sin(param) - ax.plot(x, y, 'b-') - elif self.repeatPattern == True: - ax.plot(points[:,0] + 1, points[:,1], 'bo') - ax.plot(points[:,0] + 1, points[:,1] + 1, 'bo') - ax.plot(points[:,0], points[:,1] + 1, 'bo') - if self.disk == False: - param = np.linspace(0, 2.0, 100) - ax.plot(param, [1] * 100, 'k') - ax.plot([1] * 100, param, 'k') - for rotation in range(1,self.rotations): - rot_angle = rotation * math.pi * 2.0 / self.rotations - s, c = math.sin(rot_angle), math.cos(rot_angle) - rot_matrix = np.matrix([[c, -s], [s, c]]) - points_permuted = np.array(np.dot(points, rot_matrix)) - ax.plot(points_permuted[:,0], points_permuted[:,1], 'bo') - ax.plot(points[:,0], points[:,1], 'ro') - else: - ax = fig.add_subplot(111) - ax.plot(points[:,0], [0] * num_points, 'ro') - if self.repeatPattern == True: - ax.plot(points[:,0] + 1, [0] * num_points, 'bo') diff --git a/math-scripts/star-generator.py b/math-scripts/star-generator.py deleted file mode 100644 index 70217e4..0000000 --- a/math-scripts/star-generator.py +++ /dev/null @@ -1,71 +0,0 @@ -from __future__ import print_function -import numpy as np -import math -import poisson -import array -from random import uniform - -def main(): - # user defined options - disk = True # this parameter defines if we look for Poisson-like distribution on a disk/sphere (center at 0, radius 1) or in a square/box (0-1 on x and y) - repeatPattern = False # this parameter defines if we look for "repeating" pattern so if we should maximize distances also with pattern repetitions - num_points = 5 # number of points we are looking for - num_iterations = 4 # number of iterations in which we take average minimum squared distances between points and try to maximize them - first_point_zero = False # should be first point zero (useful if we already have such sample) or random - iterations_per_point = 128 # iterations per point trying to look for a new point with larger distance - sorting_buckets = 0 # if this option is > 0, then sequence will be optimized for tiled cache locality in n x n tiles (x followed by y) - num_dim = 3 # 1, 2, 3 dimensional version - num_rotations = 1 # number of rotations of pattern to check against - - - poisson_generator = poisson.PoissonGenerator(num_dim, disk, repeatPattern, first_point_zero) - points = poisson_generator.find_point_set(num_points, num_iterations, iterations_per_point, num_rotations) - print(points) - print("") - print("") - print("") - #normalize vectors - norm_points = [] - for vector in points: - norm_points.append(vector/np.linalg.norm(vector)) - print(norm_points) - #ensure all vectors are pointing upwards - final_points = [] - for vector in norm_points: - if np.dot(vector, [0,1,0]) < 0: - final_points.append(-vector) - else: - final_points.append(vector) - print("") - print("") - print("") - print(final_points) - print("") - print("") - print("") - # format output - print("const int starCount = {};".format(num_points)) - print("vec3 starPositions[starCount] = vec3[](") - for i, vector in enumerate(final_points): - if (i == len(final_points)-1): - print(" vec3({}, {}, {})".format(vector[0], vector[1], vector[2])) - else: - print(" vec3({}, {}, {}),".format(vector[0], vector[1], vector[2])) - print(");") - print("") - # generate star sizes - sizes = [] - for i in range(num_points): - sizes.append(uniform(0.3, 1.5)) - - print("float starSizes[starCount] = float[](") - for i, size in enumerate(sizes): - if (i==len(sizes)): - print(" float({})".format(size)) - else: - print(" float({}),".format(size)) - print(");") - - -if __name__ == '__main__': - main()