// // Test_v3interp.cpp // BulletTest // // Copyright (c) 2011 Apple Inc. // #include "LinearMath/btScalar.h" #if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON) #include "Test_v3interp.h" #include "vector.h" #include "Utils.h" #include "main.h" #include #include #include // reference code for testing purposes static inline btVector3& v3interp_ref( btVector3& vr, btVector3& v0, btVector3& v1, btScalar& rt); #define LOOPCOUNT 1024 #define NUM_CYCLES 1000 int Test_v3interp(void) { btVector3 v1, v2; btScalar rt; float x,y,z,w; float vNaN = BT_NAN; w = BT_NAN; // w channel NaN btVector3 correct_res, test_res; for (rt = 0.0f; rt <= 1.0f; rt += 0.1f) { correct_res.setValue(vNaN, vNaN, vNaN); test_res.setValue(vNaN, vNaN, vNaN); // Init the data x = RANDF_01; y = RANDF_01; z = RANDF_01; v1.setValue(x,y,z); v1.setW(w); x = RANDF_01; y = RANDF_01; z = RANDF_01; v2.setValue(x,y,z); v2.setW(w); correct_res = v3interp_ref(correct_res, v1, v2, rt); test_res.setInterpolate3(v1, v2, rt); if( fabs(correct_res.m_floats[0] - test_res.m_floats[0]) + fabs(correct_res.m_floats[1] - test_res.m_floats[1]) + fabs(correct_res.m_floats[2] - test_res.m_floats[2]) > FLT_EPSILON * 4) { vlog( "Error - v3interp result error! " "\ncorrect = (%10.4f, %10.4f, %10.4f) " "\ntested = (%10.4f, %10.4f, %10.4f) \n" "\n rt=%10.4f", correct_res.m_floats[0], correct_res.m_floats[1], correct_res.m_floats[2], test_res.m_floats[0], test_res.m_floats[1], test_res.m_floats[2], rt); return 1; } } #define DATA_SIZE LOOPCOUNT btVector3 vec3_arr1[DATA_SIZE]; btVector3 vec3_arr2[DATA_SIZE]; btScalar rt_arr[DATA_SIZE]; uint64_t scalarTime; uint64_t vectorTime; size_t j, k; { uint64_t startTime, bestTime, currentTime; bestTime = -1LL; scalarTime = 0; for (j = 0; j < NUM_CYCLES; j++) { for( k = 0; k < DATA_SIZE; k++ ) { x = RANDF_01; y = RANDF_01; z = RANDF_01; vec3_arr1[k].setValue(x,y,z); vec3_arr1[k].setW(w); x = RANDF_01; y = RANDF_01; z = RANDF_01; vec3_arr2[k].setValue(x,y,z); vec3_arr2[k].setW(w); rt_arr[k] = RANDF_01; } startTime = ReadTicks(); for( k = 0; k < LOOPCOUNT; k++ ) { v3interp_ref(vec3_arr1[k], vec3_arr1[k], vec3_arr2[k], rt_arr[k]); } currentTime = ReadTicks() - startTime; scalarTime += currentTime; if( currentTime < bestTime ) bestTime = currentTime; } if( 0 == gReportAverageTimes ) scalarTime = bestTime; else scalarTime /= NUM_CYCLES; } { uint64_t startTime, bestTime, currentTime; bestTime = -1LL; vectorTime = 0; for (j = 0; j < NUM_CYCLES; j++) { for( k = 0; k < DATA_SIZE; k++ ) { x = RANDF_01; y = RANDF_01; z = RANDF_01; vec3_arr1[k].setValue(x,y,z); vec3_arr1[k].setW(w); x = RANDF_01; y = RANDF_01; z = RANDF_01; vec3_arr2[k].setValue(x,y,z); vec3_arr2[k].setW(w); rt_arr[k] = RANDF_01; } startTime = ReadTicks(); for( k = 0; k < LOOPCOUNT; k++ ) { vec3_arr1[k].setInterpolate3(vec3_arr1[k], vec3_arr2[k], rt_arr[k]); } currentTime = ReadTicks() - startTime; vectorTime += currentTime; if( currentTime < bestTime ) bestTime = currentTime; } if( 0 == gReportAverageTimes ) vectorTime = bestTime; else vectorTime /= NUM_CYCLES; } vlog( "Timing:\n" ); vlog( " \t scalar\t vector\n" ); vlog( " \t%10.4f\t%10.4f\n", TicksToCycles( scalarTime ) / LOOPCOUNT, TicksToCycles( vectorTime ) / LOOPCOUNT ); return 0; } static btVector3& v3interp_ref( btVector3& vr, btVector3& v0, btVector3& v1, btScalar& rt) { btScalar s = btScalar(1.0) - rt; vr.m_floats[0] = s * v0.m_floats[0] + rt * v1.m_floats[0]; vr.m_floats[1] = s * v0.m_floats[1] + rt * v1.m_floats[1]; vr.m_floats[2] = s * v0.m_floats[2] + rt * v1.m_floats[2]; return vr; } #endif //BT_USE_SSE