// // Test_v3norm.cpp // BulletTest // // Copyright (c) 2011 Apple Inc. // #include "LinearMath/btScalar.h" #if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON) #include "Test_v3norm.h" #include "vector.h" #include "Utils.h" #include "main.h" #include #include #include // reference code for testing purposes static inline btVector3& v3norm_ref(btVector3& v); #define LOOPCOUNT 1024 #define NUM_CYCLES 1000 int Test_v3norm(void) { btVector3 v1, v2; float x,y,z,w; // Init the data x = RANDF_01; y = RANDF_01; z = RANDF_01; w = BT_NAN; // w channel NaN v1.setValue(x,y,z); v1.setW(w); v2 = v1; btVector3 correct_res, test_res; { float vNaN = BT_NAN; correct_res.setValue(vNaN, vNaN, vNaN); test_res.setValue(vNaN, vNaN, vNaN); correct_res = v3norm_ref(v1); test_res = v2.normalize(); if( fabs(correct_res.m_floats[0] - test_res.m_floats[0]) + fabs(correct_res.m_floats[1] - test_res.m_floats[1]) + fabs(correct_res.m_floats[2] - test_res.m_floats[2]) > FLT_EPSILON * 4) { vlog( "Error - v3norm result error! " "\ncorrect = (%10.4f, %10.4f, %10.4f) " "\ntested = (%10.4f, %10.4f, %10.4f) \n", correct_res.m_floats[0], correct_res.m_floats[1], correct_res.m_floats[2], test_res.m_floats[0], test_res.m_floats[1], test_res.m_floats[2]); return 1; } } #define DATA_SIZE LOOPCOUNT btVector3 vec3_arr0[DATA_SIZE]; btVector3 vec3_arr1[DATA_SIZE]; uint64_t scalarTime; uint64_t vectorTime; size_t j, k; { uint64_t startTime, bestTime, currentTime; bestTime = -1LL; scalarTime = 0; for (j = 0; j < NUM_CYCLES; j++) { for( k = 0; k < DATA_SIZE; k++ ) { x = RANDF_01; y = RANDF_01; z = RANDF_01; vec3_arr1[k].setValue(x,y,z); vec3_arr1[k].setW(w); } startTime = ReadTicks(); for( k = 0; k+4 <= LOOPCOUNT; k+=4 ) { vec3_arr0[k] = v3norm_ref(vec3_arr1[k]); vec3_arr0[k+1] = v3norm_ref(vec3_arr1[k+1]); vec3_arr0[k+2] = v3norm_ref(vec3_arr1[k+2]); vec3_arr0[k+3] = v3norm_ref(vec3_arr1[k+3]); } currentTime = ReadTicks() - startTime; scalarTime += currentTime; if( currentTime < bestTime ) bestTime = currentTime; } if( 0 == gReportAverageTimes ) scalarTime = bestTime; else scalarTime /= NUM_CYCLES; } { uint64_t startTime, bestTime, currentTime; bestTime = -1LL; vectorTime = 0; for (j = 0; j < NUM_CYCLES; j++) { for( k = 0; k < DATA_SIZE; k++ ) { x = RANDF_01; y = RANDF_01; z = RANDF_01; vec3_arr1[k].setValue(x,y,z); vec3_arr1[k].setW(w); } startTime = ReadTicks(); for( k = 0; k+4 <= LOOPCOUNT; k+=4 ) { vec3_arr0[k] = vec3_arr1[k].normalize(); vec3_arr0[k+1] = vec3_arr1[k+1].normalize(); vec3_arr0[k+2] = vec3_arr1[k+2].normalize(); vec3_arr0[k+3] = vec3_arr1[k+3].normalize(); } currentTime = ReadTicks() - startTime; vectorTime += currentTime; if( currentTime < bestTime ) bestTime = currentTime; } if( 0 == gReportAverageTimes ) vectorTime = bestTime; else vectorTime /= NUM_CYCLES; } vlog( "Timing:\n" ); vlog( " \t scalar\t vector\n" ); vlog( " \t%10.4f\t%10.4f\n", TicksToCycles( scalarTime ) / LOOPCOUNT, TicksToCycles( vectorTime ) / LOOPCOUNT ); return 0; } static btVector3& v3norm_ref(btVector3& v) { float dot = v.m_floats[0] * v.m_floats[0] + v.m_floats[1] * v.m_floats[1] + v.m_floats[2] * v.m_floats[2]; dot = 1.0f / sqrtf(dot); v.m_floats[0] *= dot; v.m_floats[1] *= dot; v.m_floats[2] *= dot; return v; } #endif //BT_USE_SSE