// // Test_3x3getRot.cpp // BulletTest // // Copyright (c) 2011 Apple Inc. // #include "LinearMath/btScalar.h" #if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON) #include "Test_3x3getRot.h" #include "vector.h" #include "Utils.h" #include "main.h" #include #include #include #define LOOPCOUNT 1000 #define ARRAY_SIZE 128 static inline btSimdFloat4 rand_f4(void) { return btAssign128( RANDF_m1p1, RANDF_m1p1, RANDF_m1p1, BT_NAN ); // w channel NaN } static inline btSimdFloat4 qtNAN_f4(void) { return btAssign128( BT_NAN, BT_NAN, BT_NAN, BT_NAN ); } static void M3x3getRot_ref( const btMatrix3x3 &m, btQuaternion &q ) { btVector3 m_el[3] = { m[0], m[1], m[2] }; btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z(); btScalar temp[4]; if (trace > btScalar(0.0)) { btScalar s = btSqrt(trace + btScalar(1.0)); temp[3]=(s * btScalar(0.5)); s = btScalar(0.5) / s; temp[0]=((m_el[2].y() - m_el[1].z()) * s); temp[1]=((m_el[0].z() - m_el[2].x()) * s); temp[2]=((m_el[1].x() - m_el[0].y()) * s); } else { int i = m_el[0].x() < m_el[1].y() ? (m_el[1].y() < m_el[2].z() ? 2 : 1) : (m_el[0].x() < m_el[2].z() ? 2 : 0); int j = (i + 1) % 3; int k = (i + 2) % 3; btScalar s = btSqrt(m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0)); temp[i] = s * btScalar(0.5); s = btScalar(0.5) / s; temp[3] = (m_el[k][j] - m_el[j][k]) * s; temp[j] = (m_el[j][i] + m_el[i][j]) * s; temp[k] = (m_el[k][i] + m_el[i][k]) * s; } q.setValue(temp[0],temp[1],temp[2],temp[3]); } static int operator!= ( const btQuaternion &a, const btQuaternion &b ) { if( fabs(a.x() - b.x()) + fabs(a.y() - b.y()) + fabs(a.z() - b.z()) + fabs(a.w() - b.w()) > FLT_EPSILON * 4) return 1; return 0; } int Test_3x3getRot(void) { // Init an array flanked by guard pages btMatrix3x3 in1[ARRAY_SIZE]; btQuaternion out[ARRAY_SIZE]; btQuaternion out2[ARRAY_SIZE]; // Init the data size_t i, j; for( i = 0; i < ARRAY_SIZE; i++ ) { in1[i] = btMatrix3x3(rand_f4(), rand_f4(), rand_f4() ); out[i] = btQuaternion(qtNAN_f4()); out2[i] = btQuaternion(qtNAN_f4()); M3x3getRot_ref(in1[i], out[i]); in1[i].getRotation(out2[i]); if( out[i] != out2[i] ) { vlog( "Error - M3x3getRot result error! "); vlog( "failure @ %ld\n", i); vlog( "\ncorrect = (%10.7f, %10.7f, %10.7f, %10.7f) " "\ntested = (%10.7f, %10.7f, %10.7f, %10.7f) \n", out[i].x(), out[i].y(), out[i].z(), out[i].w(), out2[i].x(), out2[i].y(), out2[i].z(), out2[i].w()); return -1; } } uint64_t scalarTime, vectorTime; uint64_t startTime, bestTime, currentTime; bestTime = ~(bestTime&0);//-1ULL; scalarTime = 0; for (j = 0; j < LOOPCOUNT; j++) { startTime = ReadTicks(); for( i = 0; i < ARRAY_SIZE; i++ ) M3x3getRot_ref(in1[i], out[i]); currentTime = ReadTicks() - startTime; scalarTime += currentTime; if( currentTime < bestTime ) bestTime = currentTime; } if( 0 == gReportAverageTimes ) scalarTime = bestTime; else scalarTime /= LOOPCOUNT; bestTime = ~(bestTime&0);//-1ULL; vectorTime = 0; for (j = 0; j < LOOPCOUNT; j++) { startTime = ReadTicks(); for( i = 0; i < ARRAY_SIZE; i++ ) { in1[i].getRotation(out2[i]); } currentTime = ReadTicks() - startTime; vectorTime += currentTime; if( currentTime < bestTime ) bestTime = currentTime; } if( 0 == gReportAverageTimes ) vectorTime = bestTime; else vectorTime /= LOOPCOUNT; vlog( "Timing:\n" ); vlog( "\t scalar\t vector\n" ); vlog( "\t%10.2f\t%10.2f\n", TicksToCycles( scalarTime ) / ARRAY_SIZE, TicksToCycles( vectorTime ) / ARRAY_SIZE ); return 0; } #endif//BT_USE_SSE