// // Test_v3skew.cpp // BulletTest // // Copyright (c) 2011 Apple Inc. // #include "LinearMath/btScalar.h" #if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON) #include "Test_v3skew.h" #include "vector.h" #include "Utils.h" #include "main.h" #include #include #include // reference code for testing purposes static void v3skew_ref( const btVector3* v, btVector3* v1, btVector3* v2, btVector3* v3); #define LOOPCOUNT 2048 #define NUM_CYCLES 10000 int Test_v3skew(void) { btVector3 v, v1, v2, v3, vt1, vt2, vt3; float x,y,z,w; // Init the data x = RANDF_01; y = RANDF_01; z = RANDF_01; w = BT_NAN; // w channel NaN v.setValue(x,y,z); v.setW(w); v1.setValue(w,w,w); v1.setW(w); vt3 = vt2 = vt1 = v3 = v2 = v1; { v3skew_ref(&v, &v1, &v2, &v3); v.getSkewSymmetricMatrix(&vt1, &vt2, &vt3); /* if( v1.m_floats[0] != vt1.m_floats[0] || v1.m_floats[1] != vt1.m_floats[1] || v1.m_floats[2] != vt1.m_floats[2] ) */ if(!(v1 == vt1)) { vlog( "Error - v3skew result error! " "\ncorrect v1 = (%10.4f, %10.4f, %10.4f) " "\ntested v1 = (%10.4f, %10.4f, %10.4f) \n", v1.m_floats[0], v1.m_floats[1], v1.m_floats[2], vt1.m_floats[0], vt1.m_floats[1], vt1.m_floats[2]); return 1; } /* if( v2.m_floats[0] != vt2.m_floats[0] || v2.m_floats[1] != vt2.m_floats[1] || v2.m_floats[2] != vt2.m_floats[2] ) */ if(!(v2 == vt2)) { vlog( "Error - v3skew result error! " "\ncorrect v2 = (%10.4f, %10.4f, %10.4f) " "\ntested v2 = (%10.4f, %10.4f, %10.4f) \n", v2.m_floats[0], v2.m_floats[1], v2.m_floats[2], vt2.m_floats[0], vt2.m_floats[1], vt2.m_floats[2]); return 1; } /* if( v3.m_floats[0] != vt3.m_floats[0] || v3.m_floats[1] != vt3.m_floats[1] || v3.m_floats[2] != vt3.m_floats[2] ) */ if(!(v3 == vt3)) { vlog( "Error - v3skew result error! " "\ncorrect v3 = (%10.4f, %10.4f, %10.4f) " "\ntested v3 = (%10.4f, %10.4f, %10.4f) \n", v3.m_floats[0], v3.m_floats[1], v3.m_floats[2], vt3.m_floats[0], vt3.m_floats[1], vt3.m_floats[2]); return 1; } } #define DATA_SIZE 256 btVector3 v3_arr0[DATA_SIZE]; btVector3 v3_arr1[DATA_SIZE]; btVector3 v3_arr2[DATA_SIZE]; btVector3 v3_arr3[DATA_SIZE]; uint64_t scalarTime; uint64_t vectorTime; size_t j, k; for( k = 0; k < DATA_SIZE; k++ ) { x = RANDF_01; y = RANDF_01; z = RANDF_01; v3_arr0[k].setValue(x,y,z); v3_arr0[k].setW(w); v3_arr1[k].setValue(w,w,w); v3_arr1[k].setW(w); v3_arr3[k] = v3_arr2[k] = v3_arr1[k]; } { uint64_t startTime, bestTime, currentTime; bestTime = -1LL; scalarTime = 0; for (j = 0; j < NUM_CYCLES; j++) { startTime = ReadTicks(); for( k = 0; k < LOOPCOUNT; k++ ) { size_t k32 = (k & (DATA_SIZE-1)); v3skew_ref( &v3_arr0[k32], &v3_arr1[k32], &v3_arr2[k32], &v3_arr3[k32]); } currentTime = ReadTicks() - startTime; scalarTime += currentTime; if( currentTime < bestTime ) bestTime = currentTime; } if( 0 == gReportAverageTimes ) scalarTime = bestTime; else scalarTime /= NUM_CYCLES; } { uint64_t startTime, bestTime, currentTime; bestTime = -1LL; vectorTime = 0; for (j = 0; j < NUM_CYCLES; j++) { startTime = ReadTicks(); for( k = 0; k < LOOPCOUNT; k++ ) { size_t k32 = (k & (DATA_SIZE -1)); v3_arr0[k32].getSkewSymmetricMatrix(&v3_arr1[k32], &v3_arr2[k32], &v3_arr3[k32]); } currentTime = ReadTicks() - startTime; vectorTime += currentTime; if( currentTime < bestTime ) bestTime = currentTime; } if( 0 == gReportAverageTimes ) vectorTime = bestTime; else vectorTime /= NUM_CYCLES; } vlog( "Timing:\n" ); vlog( " \t scalar\t vector\n" ); vlog( " \t%10.4f\t%10.4f\n", TicksToCycles( scalarTime ) / LOOPCOUNT, TicksToCycles( vectorTime ) / LOOPCOUNT ); return 0; } static void v3skew_ref( const btVector3* v, btVector3* v1, btVector3* v2, btVector3* v3) { v1->setValue(0. ,-v->z(),v->y()); v2->setValue(v->z() ,0. ,-v->x()); v3->setValue(-v->y(),v->x() ,0.); } #endif //BT_USE_SSE