/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2007 Erwin Coumans http://bulletphysics.com This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include #include "PosixThreadSupport.h" #ifdef USE_PTHREADS #include #include #include "SpuCollisionTaskProcess.h" #include "SpuNarrowPhaseCollisionTask/SpuGatheringCollisionTask.h" #define checkPThreadFunction(returnValue) \ if(0 != returnValue) { \ printf("PThread problem at line %i in file %s: %i %d\n", __LINE__, __FILE__, returnValue, errno); \ } // The number of threads should be equal to the number of available cores // Todo: each worker should be linked to a single core, using SetThreadIdealProcessor. // PosixThreadSupport helps to initialize/shutdown libspe2, start/stop SPU tasks and communication // Setup and initialize SPU/CELL/Libspe2 PosixThreadSupport::PosixThreadSupport(ThreadConstructionInfo& threadConstructionInfo) { startThreads(threadConstructionInfo); } // cleanup/shutdown Libspe2 PosixThreadSupport::~PosixThreadSupport() { stopSPU(); } #if (defined (__APPLE__)) #define NAMED_SEMAPHORES #endif // this semaphore will signal, if and how many threads are finished with their work static sem_t* mainSemaphore=0; static sem_t* createSem(const char* baseName) { static int semCount = 0; #ifdef NAMED_SEMAPHORES /// Named semaphore begin char name[32]; snprintf(name, 32, "/%s-%d-%4.4d", baseName, getpid(), semCount++); sem_t* tempSem = sem_open(name, O_CREAT, 0600, 0); if (tempSem != reinterpret_cast(SEM_FAILED)) { // printf("Created \"%s\" Semaphore %p\n", name, tempSem); } else { //printf("Error creating Semaphore %d\n", errno); exit(-1); } /// Named semaphore end #else sem_t* tempSem = new sem_t; checkPThreadFunction(sem_init(tempSem, 0, 0)); #endif return tempSem; } static void destroySem(sem_t* semaphore) { #ifdef NAMED_SEMAPHORES checkPThreadFunction(sem_close(semaphore)); #else checkPThreadFunction(sem_destroy(semaphore)); delete semaphore; #endif } static void *threadFunction(void *argument) { PosixThreadSupport::btSpuStatus* status = (PosixThreadSupport::btSpuStatus*)argument; while (1) { checkPThreadFunction(sem_wait(status->startSemaphore)); void* userPtr = status->m_userPtr; if (userPtr) { btAssert(status->m_status); status->m_userThreadFunc(userPtr,status->m_lsMemory); status->m_status = 2; checkPThreadFunction(sem_post(mainSemaphore)); status->threadUsed++; } else { //exit Thread status->m_status = 3; checkPThreadFunction(sem_post(mainSemaphore)); printf("Thread with taskId %i exiting\n",status->m_taskId); break; } } printf("Thread TERMINATED\n"); return 0; } ///send messages to SPUs void PosixThreadSupport::sendRequest(uint32_t uiCommand, ppu_address_t uiArgument0, uint32_t taskId) { /// gMidphaseSPU.sendRequest(CMD_GATHER_AND_PROCESS_PAIRLIST, (uint32_t) &taskDesc); ///we should spawn an SPU task here, and in 'waitForResponse' it should wait for response of the (one of) the first tasks that finished switch (uiCommand) { case CMD_GATHER_AND_PROCESS_PAIRLIST: { btSpuStatus& spuStatus = m_activeSpuStatus[taskId]; btAssert(taskId >= 0); btAssert(taskId < m_activeSpuStatus.size()); spuStatus.m_commandId = uiCommand; spuStatus.m_status = 1; spuStatus.m_userPtr = (void*)uiArgument0; // fire event to start new task checkPThreadFunction(sem_post(spuStatus.startSemaphore)); break; } default: { ///not implemented btAssert(0); } }; } ///check for messages from SPUs void PosixThreadSupport::waitForResponse(unsigned int *puiArgument0, unsigned int *puiArgument1) { ///We should wait for (one of) the first tasks to finish (or other SPU messages), and report its response ///A possible response can be 'yes, SPU handled it', or 'no, please do a PPU fallback' btAssert(m_activeSpuStatus.size()); // wait for any of the threads to finish checkPThreadFunction(sem_wait(mainSemaphore)); // get at least one thread which has finished size_t last = -1; for(size_t t=0; t < size_t(m_activeSpuStatus.size()); ++t) { if(2 == m_activeSpuStatus[t].m_status) { last = t; break; } } btSpuStatus& spuStatus = m_activeSpuStatus[last]; btAssert(spuStatus.m_status > 1); spuStatus.m_status = 0; // need to find an active spu btAssert(last >= 0); *puiArgument0 = spuStatus.m_taskId; *puiArgument1 = spuStatus.m_status; } void PosixThreadSupport::startThreads(ThreadConstructionInfo& threadConstructionInfo) { printf("%s creating %i threads.\n", __FUNCTION__, threadConstructionInfo.m_numThreads); m_activeSpuStatus.resize(threadConstructionInfo.m_numThreads); mainSemaphore = createSem("main"); //checkPThreadFunction(sem_wait(mainSemaphore)); for (int i=0;i < threadConstructionInfo.m_numThreads;i++) { printf("starting thread %d\n",i); btSpuStatus& spuStatus = m_activeSpuStatus[i]; spuStatus.startSemaphore = createSem("threadLocal"); checkPThreadFunction(pthread_create(&spuStatus.thread, NULL, &threadFunction, (void*)&spuStatus)); spuStatus.m_userPtr=0; spuStatus.m_taskId = i; spuStatus.m_commandId = 0; spuStatus.m_status = 0; spuStatus.m_lsMemory = threadConstructionInfo.m_lsMemoryFunc(); spuStatus.m_userThreadFunc = threadConstructionInfo.m_userThreadFunc; spuStatus.threadUsed = 0; printf("started thread %d \n",i); } } void PosixThreadSupport::startSPU() { } ///tell the task scheduler we are done with the SPU tasks void PosixThreadSupport::stopSPU() { for(size_t t=0; t < size_t(m_activeSpuStatus.size()); ++t) { btSpuStatus& spuStatus = m_activeSpuStatus[t]; printf("%s: Thread %i used: %ld\n", __FUNCTION__, int(t), spuStatus.threadUsed); spuStatus.m_userPtr = 0; checkPThreadFunction(sem_post(spuStatus.startSemaphore)); checkPThreadFunction(sem_wait(mainSemaphore)); printf("destroy semaphore\n"); destroySem(spuStatus.startSemaphore); printf("semaphore destroyed\n"); checkPThreadFunction(pthread_join(spuStatus.thread,0)); } printf("destroy main semaphore\n"); destroySem(mainSemaphore); printf("main semaphore destroyed\n"); m_activeSpuStatus.clear(); } class PosixCriticalSection : public btCriticalSection { pthread_mutex_t m_mutex; public: PosixCriticalSection() { pthread_mutex_init(&m_mutex, NULL); } virtual ~PosixCriticalSection() { pthread_mutex_destroy(&m_mutex); } ATTRIBUTE_ALIGNED16(unsigned int mCommonBuff[32]); virtual unsigned int getSharedParam(int i) { return mCommonBuff[i]; } virtual void setSharedParam(int i,unsigned int p) { mCommonBuff[i] = p; } virtual void lock() { pthread_mutex_lock(&m_mutex); } virtual void unlock() { pthread_mutex_unlock(&m_mutex); } }; #if defined(_POSIX_BARRIERS) && (_POSIX_BARRIERS - 20012L) >= 0 /* OK to use barriers on this platform */ class PosixBarrier : public btBarrier { pthread_barrier_t m_barr; int m_numThreads; public: PosixBarrier() :m_numThreads(0) { } virtual ~PosixBarrier() { pthread_barrier_destroy(&m_barr); } virtual void sync() { int rc = pthread_barrier_wait(&m_barr); if(rc != 0 && rc != PTHREAD_BARRIER_SERIAL_THREAD) { printf("Could not wait on barrier\n"); exit(-1); } } virtual void setMaxCount(int numThreads) { int result = pthread_barrier_init(&m_barr, NULL, numThreads); m_numThreads = numThreads; btAssert(result==0); } virtual int getMaxCount() { return m_numThreads; } }; #else /* Not OK to use barriers on this platform - insert alternate code here */ class PosixBarrier : public btBarrier { pthread_mutex_t m_mutex; pthread_cond_t m_cond; int m_numThreads; int m_called; public: PosixBarrier() :m_numThreads(0) { } virtual ~PosixBarrier() { if (m_numThreads>0) { pthread_mutex_destroy(&m_mutex); pthread_cond_destroy(&m_cond); } } virtual void sync() { pthread_mutex_lock(&m_mutex); m_called++; if (m_called == m_numThreads) { m_called = 0; pthread_cond_broadcast(&m_cond); } else { pthread_cond_wait(&m_cond,&m_mutex); } pthread_mutex_unlock(&m_mutex); } virtual void setMaxCount(int numThreads) { if (m_numThreads>0) { pthread_mutex_destroy(&m_mutex); pthread_cond_destroy(&m_cond); } m_called = 0; pthread_mutex_init(&m_mutex,NULL); pthread_cond_init(&m_cond,NULL); m_numThreads = numThreads; } virtual int getMaxCount() { return m_numThreads; } }; #endif//_POSIX_BARRIERS btBarrier* PosixThreadSupport::createBarrier() { PosixBarrier* barrier = new PosixBarrier(); barrier->setMaxCount(getNumTasks()); return barrier; } btCriticalSection* PosixThreadSupport::createCriticalSection() { return new PosixCriticalSection(); } void PosixThreadSupport::deleteBarrier(btBarrier* barrier) { delete barrier; } void PosixThreadSupport::deleteCriticalSection(btCriticalSection* cs) { delete cs; } #endif // USE_PTHREADS