/* FLUIDS v.1 - SPH Fluid Simulator for CPU and GPU Copyright (C) 2008. Rama Hoetzlein, http://www.rchoetzlein.com ZLib license This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ //#include "C:\CUDA\common\inc\cutil.h" // cutil32.lib #include #include "../CUDA/btCudaDefines.h" #if defined(__APPLE__) || defined(MACOSX) #include #else #include #endif #include #include "radixsort.cu" #include "fluid_system_kern.cu" // build kernel FluidParams fcuda; __device__ char* bufPnts; // point data (array of Fluid structs) __device__ char* bufPntSort; // point data (array of Fluid structs) __device__ uint* bufHash[2]; // point grid hash __device__ int* bufGrid; extern "C" { // Initialize CUDA void cudaInit(int argc, char **argv) { //CUT_DEVICE_INIT(argc, argv); cudaDeviceProp p; cudaGetDeviceProperties ( &p, 0); printf ( "-- CUDA --\n" ); printf ( "Name: %s\n", p.name ); printf ( "Revision: %d.%d\n", p.major, p.minor ); printf ( "Global Mem: %d\n", p.totalGlobalMem ); printf ( "Shared/Blk: %d\n", p.sharedMemPerBlock ); printf ( "Regs/Blk: %d\n", p.regsPerBlock ); printf ( "Warp Size: %d\n", p.warpSize ); printf ( "Mem Pitch: %d\n", p.memPitch ); printf ( "Thrds/Blk: %d\n", p.maxThreadsPerBlock ); printf ( "Const Mem: %d\n", p.totalConstMem ); printf ( "Clock Rate: %d\n", p.clockRate ); BT_GPU_SAFE_CALL ( cudaMalloc ( (void**) &bufPnts, 10 ) ); BT_GPU_SAFE_CALL ( cudaMalloc ( (void**) &bufPntSort, 10 ) ); BT_GPU_SAFE_CALL ( cudaMalloc ( (void**) &bufHash, 10 ) ); BT_GPU_SAFE_CALL ( cudaMalloc ( (void**) &bufGrid, 10 ) ); }; // Compute number of blocks to create int iDivUp (int a, int b) { return (a % b != 0) ? (a / b + 1) : (a / b); } void computeNumBlocks (int numPnts, int maxThreads, int &numBlocks, int &numThreads) { numThreads = min( maxThreads, numPnts ); numBlocks = iDivUp ( numPnts, numThreads ); } void FluidClearCUDA () { BT_GPU_SAFE_CALL ( cudaFree ( bufPnts ) ); BT_GPU_SAFE_CALL ( cudaFree ( bufPntSort ) ); BT_GPU_SAFE_CALL ( cudaFree ( bufHash[0] ) ); BT_GPU_SAFE_CALL ( cudaFree ( bufHash[1] ) ); BT_GPU_SAFE_CALL ( cudaFree ( bufGrid ) ); } void FluidSetupCUDA ( int num, int stride, float3 min, float3 max, float3 res, float3 size, int chk ) { fcuda.min = make_float3(min.x, min.y, min.z); fcuda.max = make_float3(max.x, max.y, max.z); fcuda.res = make_float3(res.x, res.y, res.z); fcuda.size = make_float3(size.x, size.y, size.z); fcuda.pnts = num; fcuda.delta.x = res.x / size.x; fcuda.delta.y = res.y / size.y; fcuda.delta.z = res.z / size.z; fcuda.cells = res.x*res.y*res.z; fcuda.chk = chk; computeNumBlocks ( fcuda.pnts, 256, fcuda.numBlocks, fcuda.numThreads); // particles computeNumBlocks ( fcuda.cells, 256, fcuda.gridBlocks, fcuda.gridThreads); // grid cell fcuda.szPnts = (fcuda.numBlocks * fcuda.numThreads) * stride; fcuda.szHash = (fcuda.numBlocks * fcuda.numThreads) * sizeof(uint2); // pairs fcuda.szGrid = (fcuda.gridBlocks * fcuda.gridThreads) * sizeof(uint); fcuda.stride = stride; printf ( "pnts: %d, t:%dx%d=%d, bufPnts:%d, bufHash:%d\n", fcuda.pnts, fcuda.numBlocks, fcuda.numThreads, fcuda.numBlocks*fcuda.numThreads, fcuda.szPnts, fcuda.szHash ); printf ( "grds: %d, t:%dx%d=%d, bufGrid:%d, Res: %dx%dx%d\n", fcuda.cells, fcuda.gridBlocks, fcuda.gridThreads, fcuda.gridBlocks*fcuda.gridThreads, fcuda.szGrid, (int) fcuda.res.x, (int) fcuda.res.y, (int) fcuda.res.z ); BT_GPU_SAFE_CALL ( cudaMalloc ( (void**) &bufPnts, fcuda.szPnts ) ); BT_GPU_SAFE_CALL ( cudaMalloc ( (void**) &bufPntSort, fcuda.szPnts ) ); BT_GPU_SAFE_CALL ( cudaMalloc ( (void**) &bufHash[0], fcuda.szHash ) ); BT_GPU_SAFE_CALL ( cudaMalloc ( (void**) &bufHash[1], fcuda.szHash ) ); BT_GPU_SAFE_CALL ( cudaMalloc ( (void**) &bufGrid, fcuda.szGrid ) ); printf ( "POINTERS\n"); printf ( "bufPnts: %p\n", bufPnts ); printf ( "bufPntSort: %p\n", bufPntSort ); printf ( "bufHash0: %p\n", bufHash[0] ); printf ( "bufHash1: %p\n", bufHash[1] ); printf ( "bufGrid: %p\n", bufGrid ); BT_GPU_SAFE_CALL ( cudaMemcpyToSymbol ( simData, &fcuda, sizeof(FluidParams) ) ); cudaThreadSynchronize (); } void FluidParamCUDA ( float sim_scale, float smooth_rad, float mass, float rest, float stiff, float visc ) { fcuda.sim_scale = sim_scale; fcuda.smooth_rad = smooth_rad; fcuda.r2 = smooth_rad * smooth_rad; fcuda.pmass = mass; fcuda.rest_dens = rest; fcuda.stiffness = stiff; fcuda.visc = visc; fcuda.pdist = pow ( fcuda.pmass / fcuda.rest_dens, 1/3.0f ); fcuda.poly6kern = 315.0f / (64.0f * 3.141592 * pow( smooth_rad, 9.0f) ); fcuda.spikykern = -45.0f / (3.141592 * pow( smooth_rad, 6.0f) ); fcuda.lapkern = 45.0f / (3.141592 * pow( smooth_rad, 6.0f) ); BT_GPU_SAFE_CALL( cudaMemcpyToSymbol ( simData, &fcuda, sizeof(FluidParams) ) ); cudaThreadSynchronize (); } void TransferToCUDA ( char* data, int* grid, int numPoints ) { BT_GPU_SAFE_CALL( cudaMemcpy ( bufPnts, data, numPoints * fcuda.stride, cudaMemcpyHostToDevice ) ); cudaThreadSynchronize (); } void TransferFromCUDA ( char* data, int* grid, int numPoints ) { BT_GPU_SAFE_CALL( cudaMemcpy ( data, bufPntSort, numPoints * fcuda.stride, cudaMemcpyDeviceToHost ) ); cudaThreadSynchronize (); BT_GPU_SAFE_CALL( cudaMemcpy ( grid, bufGrid, fcuda.cells * sizeof(uint), cudaMemcpyDeviceToHost ) ); } void Grid_InsertParticlesCUDA () { BT_GPU_SAFE_CALL( cudaMemset ( bufHash[0], 0, fcuda.szHash ) ); hashParticles<<< fcuda.numBlocks, fcuda.numThreads>>> ( bufPnts, (uint2*) bufHash[0], fcuda.pnts ); BT_GPU_CHECK_ERROR( "Kernel execution failed"); cudaThreadSynchronize (); //int buf[20000]; /*printf ( "HASH: %d (%d)\n", fcuda.pnts, fcuda.numBlocks*fcuda.numThreads ); BT_GPU_SAFE_CALL( cudaMemcpy ( buf, bufHash[0], fcuda.pnts * 2*sizeof(uint), cudaMemcpyDeviceToHost ) ); //for (int n=0; n < fcuda.numBlocks*fcuda.numThreads; n++) { for (int n=0; n < 100; n++) { printf ( "%d: <%d,%d>\n", n, buf[n*2], buf[n*2+1] ); }*/ RadixSort( (KeyValuePair *) bufHash[0], (KeyValuePair *) bufHash[1], fcuda.pnts, 32); BT_GPU_CHECK_ERROR( "Kernel execution failed"); cudaThreadSynchronize (); /*printf ( "HASH: %d (%d)\n", fcuda.pnts, fcuda.numBlocks*fcuda.numThreads ); BT_GPU_SAFE_CALL( cudaMemcpy ( buf, bufHash[0], fcuda.pnts * 2*sizeof(uint), cudaMemcpyDeviceToHost ) ); //for (int n=0; n < fcuda.numBlocks*fcuda.numThreads; n++) { for (int n=0; n < 100; n++) { printf ( "%d: <%d,%d>\n", n, buf[n*2], buf[n*2+1] ); }*/ // insertParticles<<< fcuda.gridBlocks, fcuda.gridThreads>>> ( bufPnts, (uint2*) bufHash[0], bufGrid, fcuda.pnts, fcuda.cells ); BT_GPU_SAFE_CALL( cudaMemset ( bufGrid, NULL_HASH, fcuda.cells * sizeof(uint) ) ); insertParticlesRadix<<< fcuda.numBlocks, fcuda.numThreads>>> ( bufPnts, (uint2*) bufHash[0], bufGrid, bufPntSort, fcuda.pnts, fcuda.cells ); BT_GPU_CHECK_ERROR( "Kernel execution failed"); cudaThreadSynchronize (); /*printf ( "GRID: %d\n", fcuda.cells ); BT_GPU_SAFE_CALL( cudaMemcpy ( buf, bufGrid, fcuda.cells * sizeof(uint), cudaMemcpyDeviceToHost ) ); *for (int n=0; n < 100; n++) { printf ( "%d: %d\n", n, buf[n]); }*/ } void SPH_ComputePressureCUDA () { computePressure<<< fcuda.numBlocks, fcuda.numThreads>>> ( bufPntSort, bufGrid, (uint2*) bufHash[0], fcuda.pnts ); BT_GPU_CHECK_ERROR( "Kernel execution failed"); cudaThreadSynchronize (); } void SPH_ComputeForceCUDA () { //-- standard force //computeForce<<< fcuda.numBlocks, fcuda.numThreads>>> ( bufPntSort, bufGrid, (uint2*) bufHash[0], fcuda.pnts ); // Force using neighbor table computeForceNbr<<< fcuda.numBlocks, fcuda.numThreads>>> ( bufPntSort, fcuda.pnts ); BT_GPU_CHECK_ERROR( "Kernel execution failed"); cudaThreadSynchronize (); } void SPH_AdvanceCUDA ( float dt, float ss ) { advanceParticles<<< fcuda.numBlocks, fcuda.numThreads>>> ( bufPntSort, fcuda.pnts, dt, ss ); BT_GPU_CHECK_ERROR( "Kernel execution failed"); cudaThreadSynchronize (); } } // extern C //----------- Per frame: Malloc/Free, Host<->Device // transfer point data to device /*char* pntData; int size = (fcuda.numBlocks*fcuda.numThreads) * stride; cudaMalloc( (void**) &pntData, size); cudaMemcpy( pntData, data, numPoints*stride, cudaMemcpyHostToDevice); insertParticles<<< fcuda.numBlocks, fcuda.numThreads >>> ( pntData, stride, numPoints ); cudaMemcpy( data, pntData, numPoints*stride, cudaMemcpyDeviceToHost); cudaFree( pntData );*/