
Developing a Marble game
Results of a practical course at the Chair for Computer Graphics and Multimedia

(RWTH Aachen University, Germany)

Jasper Veit Manousek∗ Steffen Fündgens† Fabian Klemp‡ Simon Froitzheim§

Figure 1: The player reached the end of the game.

Abstract

Marble Racing games are a sub-genre of games where the player
controls a marble to either run races, solve puzzles or complete
similar tasks. In Saxum the player must travel through an open level
completing some basic switch tasks and a simple puzzle to help the
sun rise again.

1 Gameplay

Common Marble Racing Games usually strive for action- and skill-
based gameplay with many obstacles and a fast pace. Our game
takes a different approach and explores the possibility of a more
puzzle-based concept with exploration elements: The player is lo-
cated in an initially dark area where only a few torches light the
path ahead. Only if he manages to master the obstacles on his way
(like impassable water), he can reach the end of the stage and let
the sun rise again as shown in Figure 1.

The level design is certainly not completely open but leaves room
for a bit of exploration. The in comparison rather slow marble speed
helps to create a for the most part relaxing gaming experience which
gets further emphasized by generous checkpoint distribution and
the resignation of flashy effects. The puzzles revolve around mov-
ing blocks onto switches and pushing switches in the correct order.

∗Jasper.Manousek@rwth-aachen.de
†Steffen.Fuendgens@rwth-aachen.de
‡Fabian.Klemp1@rwth-aachen.de
§Simon.Froitzheim@rwth-aachen.de

2 Implementation

2.1 Loading

Our game plays mainly on a heightmap. We load the height-map
from a greyscale PNG and pass the height data to a framebuffer, so
ACGL can render it. We also pass the height data to Bullet Physics,
to create a collision shape.

On the height-map we place objects that we load from two XML
files. The compositions file defines some properties for classes of
objects, like the names of the OBJ file and the texture file, and pa-
rameters for lighting and for the physics. It also defines composi-
tions that are made up of multiple objects that can be scaled, rotated
and translated individually. One compositions file could get used
for multiple levels. The level XML file defines which compositions
are placed where. This part of the file gets generated by our con-
verter. In addition to that, the compositions can also be scaled and
rotated manually here.

The converter is a separate executable that takes the path to a PNG
file as input. In the PNG file compositions are placed as pixels.
We decided to let the red value of the pixel identify which kind of
composition it represents. The green and blue values are written by
the converter and used to identify single compositions. This way
manual changes in the generated level XML can be kept when the
converter is run again.

2.2 Triggers

Because a lot of the gameplay in Saxum is focused on solving chal-
lenges and activating events, we decided to integrate the scripting
language Lua to make our triggers customizable. In the level XML



we can add triggers to objects. We define a region in global space
and when the object enters or leaves the region a Lua script is called.
The script can then activate different events like opening a door or
letting the sun rise at the end of the level.

2.3 Graphics

For the visual aspects we started with basic rendering of OBJ files.
Every object has a position and a rotation. The loading of the OBJ
files and the textures was already implemented in ACGL. Next we
implemented Phong shading for point lights and directional lights.
This gave us a basic lighting model, based on the normals of the
triangle meshes.

We then moved on to shadow mapping for shadows. We started
with shadow mapping for our only directional light(the sun), be-
cause it was the easiest to implement. To further refine our shadows
we implemented Cascaded Shadow Mapping, which utilizes several
shadow maps with different resolutions(the closer to the camera, the
higher the resolution).

Later we expanded on this by implementing shadow mapping for
point lights using cube map textures. It took quite some time to
implement them correctly due to discrepancies of how OpenGL de-
fined the up vector and how we thought it should be.

We implemented a basic day/night cycle using one sky texture for
the day and one for the night which get blended together depending
on the height of the sun.

The sky textures are mapped to a skydome and the sun is procedu-
rally painted on top. This allowed the sun to easily be moved during
runtime.

To hide the popping of objects and the terrain into the view frustum
we implemented a basic fog. We later changed the color of the fog
depending on the sun height to get a more realistic sun rise.

The last feature we implemented was a basic flame rendering. To
do that we used a geometry shader to generate a basic flame shape
during runtime. The circular flame shape is generated using a co-
sine and an exponential function.

To get a simple illusion of heat we blurred the flames: We do this
in several render passes: At first we render the flames with color.
After that we increase the size of the flames a little bit and render
the flames without color while also writing to the stencil buffer. We
then blur the parts selected by the stencil shader.

2.4 Physics

The physics is based on Bullet Physics, with a simple callback func-
tion used to relay the data to the graphics pipeline. We decided to
use a btvhTerrainShape for the terrain. This is much more effective
than using a triangle mesh. Additionally we have spheres, boxes,
and a few other basic primitives. Finally we implemented btvh-
TriangleMesh shapes and concave triangle meshes, which are more
strenuous for the system, but allow for moveable triangle meshes.

Unfortunately Bullet Physics proved unable to handle many forms
of constraints that we required. For this we created two instances
of spring constraints. The first is a spring constraint which creates a
force attempting to keep two rigid bodies a set distance apart. The
second was a derivation of the first, generating a force in an attempt
to confine the rigid body to a certain position. This constraint is
what we used to create switches that could be embedded within the
terrain by filtering out the collision between the two bodies. We
also used a similar constraint to create a physics based camera. The
camera attempts to follow the player at an angle specified by the

player. Finally we used the constraints to get the player to float in
the air. To do this a constraint is added via the Lua script, allowing
the player to get an improved view of the sunrise.

Additionally the respawn animation was created using the physics
engine. It lets the ball continue to rotate, while changing certain
properties of it, especially how it will move and that it will ignore
the collision with all other objects. After it sinks a certain distance
it will reappear in a similar fashion before its normal physic state is
restored.

The physics came with many challenges, partially stemming from
our integration into a new field, but also partially due to the nature
of Bullet Physics itself. If bullet does not receive enough updates
the simulation becomes jagged and unrealistic. To solve this it is
suggested to recall the world multiple times per frame to allow a
more accurate simulation. Unfortunately, especially with the intro-
duction of the physics based camera, problems arose. To solve this
we not only recall the complete update method within the physics,
but also recall the complete update method in the level to stabilize
the experience.

2.5 Content Creation

Saxum contains many custom models that we created with the tools
that the program Blender provides as well as several textures from
the website cgtextures.com. We edited these textures, so they can
fit our purposes: Texture editing work included smoothing for bet-
ter UV-Mapping, removing seams etc. All editing, including the
creation of the PNGs that are used for heightmap generation and
object placement, as well as our completely custom textures were
done with the GNU Image Manipulation Program.

3 Conclusion

Our group had no prior experience with such large projects. Though
our lack of previous experience hampered our progress, we have
managed to amass a great deal of experience in game design, project
management and teamwork, as well as knowledge in the underlying
framework of games.

Our game is an interesting twist on an old concept, and our play
tests have shown that we manage to achieve a notable awe factor
for those who complete it.

Through the experience we have gained we are confident that all
our future projects, especially those in the discipline of game pro-
gramming will benefit.

4 References

cgTextures.com
Blender
Gimp
Bullet Physics
ACGL - Aachen Computer Graphics Library

http://cgTextures.com
http://blender.org
http://Gimp.org
http://bulletphysics.org

