// // Test_qtmulV3Q.cpp // BulletTest // // Copyright (c) 2011 Apple Inc. // #include "LinearMath/btScalar.h" #if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON) #include "Test_qtmulV3Q.h" #include "vector.h" #include "Utils.h" #include "main.h" #include #include #include #define BT_OP(a, b) ((a) * (b)) // reference code for testing purposes static inline btQuaternion qtmulV3Q_ref(const btVector3& w, const btQuaternion& q); static inline btQuaternion qtmulV3Q_ref(const btVector3& w, const btQuaternion& q) { return btQuaternion( +w.x() * q.w() + w.y() * q.z() - w.z() * q.y(), +w.y() * q.w() + w.z() * q.x() - w.x() * q.z(), +w.z() * q.w() + w.x() * q.y() - w.y() * q.x(), -w.x() * q.x() - w.y() * q.y() - w.z() * q.z()); } #define LOOPCOUNT 1024 #define NUM_CYCLES 1000 static inline btSimdFloat4 rand_f4(void) { return btAssign128( RANDF_m1p1, RANDF_m1p1, RANDF_m1p1, BT_NAN ); // w channel NaN } static inline btSimdFloat4 qtrand_f4(void) { return btAssign128( RANDF_m1p1, RANDF_m1p1, RANDF_m1p1, RANDF_m1p1 ); } static inline btSimdFloat4 qtNAN_f4(void) { return btAssign128( BT_NAN, BT_NAN, BT_NAN, BT_NAN ); } int Test_qtmulV3Q(void) { btQuaternion q; btVector3 v3; // Init the data q = btQuaternion(qtrand_f4()); v3 = btVector3(rand_f4()); btQuaternion correct_res, test_res; correct_res = btQuaternion(qtNAN_f4()); test_res = btQuaternion(qtNAN_f4()); { correct_res = qtmulV3Q_ref(v3, q); test_res = BT_OP(v3, q); if( fabsf(correct_res.x() - test_res.x()) + fabsf(correct_res.y() - test_res.y()) + fabsf(correct_res.z() - test_res.z()) + fabsf(correct_res.w() - test_res.w()) > FLT_EPSILON*8 ) { vlog( "Error - qtmulV3Q result error! " "\ncorrect = (%10.4f, %10.4f, %10.4f, %10.4f) " "\ntested = (%10.4f, %10.4f, %10.4f, %10.4f) \n", correct_res.x(), correct_res.y(), correct_res.z(), correct_res.w(), test_res.x(), test_res.y(), test_res.z(), test_res.w()); return 1; } } #define DATA_SIZE LOOPCOUNT btQuaternion qt_arrR[DATA_SIZE]; btQuaternion qt_arr[DATA_SIZE]; btVector3 v3_arr[DATA_SIZE]; uint64_t scalarTime; uint64_t vectorTime; size_t j, k; { uint64_t startTime, bestTime, currentTime; bestTime = -1LL; scalarTime = 0; for (j = 0; j < NUM_CYCLES; j++) { for( k = 0; k < DATA_SIZE; k++ ) { qt_arr[k] = btQuaternion(qtrand_f4()); v3_arr[k] = btVector3(rand_f4()); } startTime = ReadTicks(); for( k = 0; k < LOOPCOUNT; k++ ) { qt_arrR[k] = qtmulV3Q_ref(v3_arr[k], qt_arr[k]); } currentTime = ReadTicks() - startTime; scalarTime += currentTime; if( currentTime < bestTime ) bestTime = currentTime; } if( 0 == gReportAverageTimes ) scalarTime = bestTime; else scalarTime /= NUM_CYCLES; } { uint64_t startTime, bestTime, currentTime; bestTime = -1LL; vectorTime = 0; for (j = 0; j < NUM_CYCLES; j++) { for( k = 0; k < DATA_SIZE; k++ ) { qt_arr[k] = btQuaternion(qtrand_f4()); v3_arr[k] = btVector3(rand_f4()); } startTime = ReadTicks(); for( k = 0; k < LOOPCOUNT; k++ ) { qt_arrR[k] = BT_OP(v3_arr[k], qt_arr[k]); } currentTime = ReadTicks() - startTime; vectorTime += currentTime; if( currentTime < bestTime ) bestTime = currentTime; } if( 0 == gReportAverageTimes ) vectorTime = bestTime; else vectorTime /= NUM_CYCLES; } vlog( "Timing:\n" ); vlog( " \t scalar\t vector\n" ); vlog( " \t%10.4f\t%10.4f\n", TicksToCycles( scalarTime ) / LOOPCOUNT, TicksToCycles( vectorTime ) / LOOPCOUNT ); return 0; } #endif//#ifdef BT_USE_SSE