// // Test_qtmulQV3.cpp // BulletTest // // Copyright (c) 2011 Apple Inc. // #include "LinearMath/btScalar.h" #if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON) #include "Test_qtmulQV3.h" #include "vector.h" #include "Utils.h" #include "main.h" #include #include #include #define BT_OP(a, b) ((a) * (b)) // reference code for testing purposes static inline btQuaternion qtmulQV3_ref(const btQuaternion& q, const btVector3& w); static inline btQuaternion qtmulQV3_ref(const btQuaternion& q, const btVector3& w) { return btQuaternion( q.w() * w.x() + q.y() * w.z() - q.z() * w.y(), q.w() * w.y() + q.z() * w.x() - q.x() * w.z(), q.w() * w.z() + q.x() * w.y() - q.y() * w.x(), -q.x() * w.x() - q.y() * w.y() - q.z() * w.z()); } #define LOOPCOUNT 1024 #define NUM_CYCLES 1000 static inline btSimdFloat4 rand_f4(void) { return btAssign128( RANDF_m1p1, RANDF_m1p1, RANDF_m1p1, BT_NAN ); // w channel NaN } static inline btSimdFloat4 qtrand_f4(void) { return btAssign128( RANDF_m1p1, RANDF_m1p1, RANDF_m1p1, RANDF_m1p1 ); } static inline btSimdFloat4 qtNAN_f4(void) { return btAssign128( BT_NAN, BT_NAN, BT_NAN, BT_NAN ); } int Test_qtmulQV3(void) { btQuaternion q; btVector3 v3; // Init the data q = btQuaternion(qtrand_f4()); v3 = btVector3(rand_f4()); btQuaternion correct_res, test_res; correct_res = btQuaternion(qtNAN_f4()); test_res = btQuaternion(qtNAN_f4()); { correct_res = qtmulQV3_ref(q, v3); test_res = BT_OP(q, v3); if( fabsf(correct_res.x() - test_res.x()) + fabsf(correct_res.y() - test_res.y()) + fabsf(correct_res.z() - test_res.z()) + fabsf(correct_res.w() - test_res.w()) > FLT_EPSILON*8 ) { vlog( "Error - qtmulQV3 result error! " "\ncorrect = (%10.4f, %10.4f, %10.4f, %10.4f) " "\ntested = (%10.4f, %10.4f, %10.4f, %10.4f) \n", correct_res.x(), correct_res.y(), correct_res.z(), correct_res.w(), test_res.x(), test_res.y(), test_res.z(), test_res.w()); return 1; } } #define DATA_SIZE LOOPCOUNT btQuaternion qt_arrR[DATA_SIZE]; btQuaternion qt_arr[DATA_SIZE]; btVector3 v3_arr[DATA_SIZE]; uint64_t scalarTime; uint64_t vectorTime; size_t j, k; { uint64_t startTime, bestTime, currentTime; bestTime = -1LL; scalarTime = 0; for (j = 0; j < NUM_CYCLES; j++) { for( k = 0; k < DATA_SIZE; k++ ) { qt_arr[k] = btQuaternion(qtrand_f4()); v3_arr[k] = btVector3(rand_f4()); } startTime = ReadTicks(); for( k = 0; k < LOOPCOUNT; k++ ) { qt_arrR[k] = qtmulQV3_ref(qt_arr[k], v3_arr[k]); } currentTime = ReadTicks() - startTime; scalarTime += currentTime; if( currentTime < bestTime ) bestTime = currentTime; } if( 0 == gReportAverageTimes ) scalarTime = bestTime; else scalarTime /= NUM_CYCLES; } { uint64_t startTime, bestTime, currentTime; bestTime = -1LL; vectorTime = 0; for (j = 0; j < NUM_CYCLES; j++) { for( k = 0; k < DATA_SIZE; k++ ) { qt_arr[k] = btQuaternion(qtrand_f4()); v3_arr[k] = btVector3(rand_f4()); } startTime = ReadTicks(); for( k = 0; k < LOOPCOUNT; k++ ) { qt_arrR[k] = BT_OP(qt_arr[k], v3_arr[k]); } currentTime = ReadTicks() - startTime; vectorTime += currentTime; if( currentTime < bestTime ) bestTime = currentTime; } if( 0 == gReportAverageTimes ) vectorTime = bestTime; else vectorTime /= NUM_CYCLES; } vlog( "Timing:\n" ); vlog( " \t scalar\t vector\n" ); vlog( " \t%10.4f\t%10.4f\n", TicksToCycles( scalarTime ) / LOOPCOUNT, TicksToCycles( vectorTime ) / LOOPCOUNT ); return 0; } #endif //BT_USE_SSE