#include "graphics.hh" #include #include #include #include #include #include "LinearMath/btIDebugDraw.h" using namespace ACGL::OpenGL; const double lightUpdateDelay = 0.5f; const double windUpdateDelay = 0.5f; const int maxShadowSampleCount = 15; Graphics::Graphics(glm::uvec2 windowSize, float nearPlane, float farPlane, int cube_size, unsigned int maxShadowRenderCount, std::string screenPath, std::string screenContinuePath) { this->windowSize = windowSize; this->nearPlane = nearPlane; this->farPlane = farPlane; this->cube_size = cube_size; this->maxShadowRenderCount = maxShadowRenderCount; this->loadingScreenPath = screenPath; this->loadingScreenContinuePath = screenContinuePath; gameStart = false; renderShadows = true; renderFlames = true; renderWorld = true; renderDebug = false; } Graphics::Graphics() { } void Graphics::init(Level* level) { // save Level this->level = level; // OpenGL state: glClearColor( 0.0, 0.0, 0.0, 1.0 ); glEnable( GL_DEPTH_TEST ); glEnable(GL_BLEND); glBlendEquation(GL_FUNC_ADD); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS); glEnable(GL_MULTISAMPLE); lastLightUpdate = 0; lastWindUpdate = - windUpdateDelay; windTarget = 0.0f; wind = glm::vec2(0.0f, 0.0f); windDirection = glm::vec2(1.0f, 1.0f); windDirectionTarget = glm::vec2(1.0f, 1.0f); textureMovementPosition = glm::vec2(0.0, 0.0); // construct VAO to give shader correct Attribute locations SharedArrayBuffer ab = SharedArrayBuffer(new ArrayBuffer()); ab->defineAttribute("aPosition", GL_FLOAT, 3); ab->defineAttribute("aTexCoord", GL_FLOAT, 2); ab->defineAttribute("aNormal", GL_FLOAT, 3); SharedVertexArrayObject vao = SharedVertexArrayObject(new VertexArrayObject()); vao->attachAllAttributes(ab); // look up all shader files starting with 'phong' and build a ShaderProgram from it: lightingShader = ShaderProgramCreator("phong").attributeLocations( vao->getAttributeLocations()).create(); skydomeShader = ShaderProgramCreator("skydome").attributeLocations( vao->getAttributeLocations()).create(); depthShader = ShaderProgramCreator("depth") .attributeLocations(vao->getAttributeLocations()).create(); depthCubeShader = ShaderProgramCreator("depth_cube") .attributeLocations(vao->getAttributeLocations()).create(); SharedArrayBuffer flame_positions_ab = SharedArrayBuffer(new ArrayBuffer()); flame_positions_ab->defineAttribute("aPosition", GL_FLOAT, 3); flame_positions_ab->defineAttribute("aColor", GL_FLOAT, 3); SharedVertexArrayObject flame_positions = SharedVertexArrayObject(new VertexArrayObject()); flame_positions->attachAllAttributes(flame_positions_ab); flameShader = ShaderProgramCreator("flame") .attributeLocations(flame_positions->getAttributeLocations()).create(); fullscreen_quad_ab = SharedArrayBuffer(new ArrayBuffer()); fullscreen_quad_ab->defineAttribute("aPosition", GL_FLOAT, 2); fullscreen_quad_ab->defineAttribute("aTexCoord", GL_FLOAT, 2); float quadData[] = { -1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 1.0f, -1.0f, 1.0f, 0.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f, 1.0f }; fullscreen_quad_ab->setDataElements(6, quadData); fullscreen_quad = SharedVertexArrayObject(new VertexArrayObject); fullscreen_quad->attachAllAttributes(fullscreen_quad_ab); flamePostShader = ShaderProgramCreator("flame_post") .attributeLocations(fullscreen_quad->getAttributeLocations()).create(); debug_ab = SharedArrayBuffer(new ArrayBuffer()); debug_ab->defineAttribute("aPosition", GL_FLOAT, 3); debug_ab->defineAttribute("aColor", GL_FLOAT, 3); debug_vao = SharedVertexArrayObject(new VertexArrayObject()); debug_vao->attachAllAttributes(debug_ab); debug_vao->setMode(GL_LINES); debugShader = ShaderProgramCreator("debug") .attributeLocations(debug_vao->getAttributeLocations()).create(); debugDrawer = DebugDraw(); level->getPhysics()->getWorld()->setDebugDrawer(&debugDrawer); depth_directionalMaps = std::vector(5); framebuffer_directional = std::vector(5); for (unsigned int i = 0; isetMinFilter(GL_NEAREST); depth_directionalMaps.at(i)->setMagFilter(GL_NEAREST); depth_directionalMaps.at(i)->setWrapS(GL_CLAMP_TO_EDGE); depth_directionalMaps.at(i)->setWrapT(GL_CLAMP_TO_EDGE); depth_directionalMaps.at(i)->setCompareMode(GL_COMPARE_REF_TO_TEXTURE); } for (unsigned int i = 0; isetDepthTexture(depth_directionalMaps.at(i)); framebuffer_directional.at(i)->validate(); } // always generate and bind all cube maps, because otherwise the shader won't work depth_cubeMaps = std::vector(maxShadowSampleCount); for (unsigned int i = 0; isetMinFilter(GL_NEAREST); depth_cubeMaps.at(i)->setMagFilter(GL_NEAREST); depth_cubeMaps.at(i)->setWrapS(GL_CLAMP_TO_EDGE); depth_cubeMaps.at(i)->setWrapT(GL_CLAMP_TO_EDGE); depth_cubeMaps.at(i)->setCompareMode(GL_COMPARE_REF_TO_TEXTURE); } framebuffer_cube = SharedFrameBufferObject(new FrameBufferObject()); light_fbo_color_texture = SharedTexture2D(new Texture2D(windowSize, GL_RGBA8)); light_fbo_color_texture->setMinFilter(GL_NEAREST); light_fbo_color_texture->setMagFilter(GL_NEAREST); light_fbo_color_texture->setWrapS(GL_CLAMP_TO_BORDER); light_fbo_color_texture->setWrapT(GL_CLAMP_TO_BORDER); light_fbo_depth_texture = SharedTexture2D(new Texture2D(windowSize, GL_DEPTH24_STENCIL8)); light_fbo_depth_texture->setMinFilter(GL_NEAREST); light_fbo_depth_texture->setMagFilter(GL_NEAREST); light_fbo_depth_texture->setWrapS(GL_CLAMP_TO_BORDER); light_fbo_depth_texture->setWrapT(GL_CLAMP_TO_BORDER); framebuffer_light = SharedFrameBufferObject(new FrameBufferObject()); framebuffer_light->attachColorTexture("oColor", light_fbo_color_texture); framebuffer_light->setDepthTexture(light_fbo_depth_texture); framebuffer_light->setClearColor(glm::vec4(0.0f, 0.0f, 0.0f, 1.0f)); framebuffer_light->validate(); flamePostShader->use(); flamePostShader->setUniform("windowSizeX", int(windowSize.x)); flamePostShader->setUniform("windowSizeY", int(windowSize.y)); bindTextureUnits(); // set shader variables that stay the same across the runtime of the application skydomeShader->use(); skydomeShader->setUniform("farPlane", farPlane); skydomeShader->setUniform("skydomeSize", level->getSkydomeSize()); skydomeShader->setUniform("fogColorDay", level->getFogColourDay()); skydomeShader->setUniform("fogColorRise", level->getFogColourRise()); skydomeShader->setUniform("fogColorNight", level->getFogColourNight()); skydomeShader->setUniform("sunColor", level->getDirectionalLight()->getColour()); lightingShader->use(); lightingShader->setUniform("farPlane", farPlane); lightingShader->setUniform("fogColorDay", level->getFogColourDay()); lightingShader->setUniform("fogColorRise", level->getFogColourRise()); lightingShader->setUniform("fogColorNight", level->getFogColourNight()); lightingShader->setUniform("ambientColor", level->getAmbientLight()); if(level->getDirectionalLight()) { lightingShader->setUniform("directionalLightVector", level->getDirectionalLight()->getPosition()); lightingShader->setUniform("directionalColor", level->getDirectionalLight()->getColour()); lightingShader->setUniform("targetDirectionalIntensity", level->getDirectionalLight()->getIntensity()); } depthCubeShader->use(); depthCubeShader->setUniform("farPlane", farPlane); level->sortObjects(Material::getAllTextures()->size()); #ifdef SAXUM_DEBUG std::cout << "There were " << Material::getAllTextures()->size() << " materials used in this level." << std::endl; #endif initShadowRenderQueue(); updateLights(); } void Graphics::bindTextureUnits(){ unsigned int textureCount = Material::getAllTextures()->size(); glGetIntegerv(GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS, &number_of_texture_units); printf("Your graphics card supports %d texture units.\n", number_of_texture_units); // Exit if we need more texture units if (number_of_texture_units < (int)textureCount + maxShadowSampleCount + 9) { printf("You need at least %d texture units to run this application. Exiting\n", textureCount + maxShadowSampleCount + 9); exit(-1); } loadingShader->use(); loadingShader->setTexture("screen", loadingScreen, 0); loadingShader->setTexture("screenContinue", loadingContinueScreen, 1); lightingShader->use(); for(unsigned int i = 0; isize(); i++) { lightingShader->setTexture("uTexture", Material::getAllTextures()->at(i), i+2); } for (unsigned int i = 0; isetTexture("shadowMap_directional" + std::to_string(i), depth_directionalMaps.at(i), textureCount + i + 2); } if (level->getLights()->size() > 0) { for(unsigned int i = 0; isetTexture("shadowMap_cube" + std::to_string(i), depth_cubeMaps.at(i), textureCount + i + 7); } } flamePostShader->use(); flamePostShader->setTexture("light_fbo", light_fbo_color_texture, textureCount + maxShadowSampleCount + 7); skydomeShader->use(); skydomeShader->setTexture("dayTexture", level->getSkydome()->getDayTexture(), textureCount + maxShadowSampleCount + 8); skydomeShader->setTexture("nightTexture", level->getSkydome()->getNightTexture(), textureCount + maxShadowSampleCount + 9); printf("This application used %d texture units.\n", textureCount + maxShadowSampleCount + 9); } void Graphics::renderLoadingScreen() { loadingScreen = Texture2DFileManager::the()->get(Texture2DCreator(loadingScreenPath)); loadingScreen->generateMipmaps(); loadingScreen->setMinFilter(GL_NEAREST_MIPMAP_LINEAR); loadingScreen->setMagFilter(GL_LINEAR); loadingContinueScreen = Texture2DFileManager::the()->get(Texture2DCreator(loadingScreenContinuePath)); loadingContinueScreen->generateMipmaps(); loadingContinueScreen->setMinFilter(GL_NEAREST_MIPMAP_LINEAR); loadingContinueScreen->setMagFilter(GL_LINEAR); loadingScreenWidth = (float)loadingScreen->getWidth(); loadingScreenHeight = (float)loadingScreen->getHeight(); fullscreen_quad_ab_loading = SharedArrayBuffer(new ArrayBuffer()); fullscreen_quad_ab_loading->defineAttribute("aPosition", GL_FLOAT, 2); fullscreen_quad_ab_loading->defineAttribute("aTexCoord", GL_FLOAT, 2); float quadData[24]; if (loadingScreenWidth/loadingScreenHeight < ((float)windowSize.x)/((float)windowSize.y)) { float quadTemp[24] ={ -(((float)windowSize.y*loadingScreenWidth)/((float)windowSize.x*loadingScreenHeight)), 1.0f, 0.0f, 1.0f, (((float)windowSize.y*loadingScreenWidth)/((float)windowSize.x*loadingScreenHeight)), 1.0f, 1.0f, 1.0f, (((float)windowSize.y*loadingScreenWidth)/((float)windowSize.x*loadingScreenHeight)), -1.0f, 1.0f, 0.0f, (((float)windowSize.y*loadingScreenWidth)/((float)windowSize.x*loadingScreenHeight)), -1.0f, 1.0f, 0.0f, -(((float)windowSize.y*loadingScreenWidth)/((float)windowSize.x*loadingScreenHeight)), -1.0f, 0.0f, 0.0f, -(((float)windowSize.y*loadingScreenWidth)/((float)windowSize.x*loadingScreenHeight)), 1.0f, 0.0f, 1.0f }; for(int i = 0; i<24; i++) { quadData[i] = quadTemp[i]; } } else { float quadTemp[24] = { -1.0f, ((float)windowSize.x*loadingScreenHeight)/((float)windowSize.y*loadingScreenWidth), 0.0f, 1.0f, 1.0f, ((float)windowSize.x*loadingScreenHeight)/((float)windowSize.y*loadingScreenWidth), 1.0f, 1.0f, 1.0f, -((float)windowSize.x*loadingScreenHeight)/((float)windowSize.y*loadingScreenWidth), 1.0f, 0.0f, 1.0f, -((float)windowSize.x*loadingScreenHeight)/((float)windowSize.y*loadingScreenWidth), 1.0f, 0.0f, -1.0f, -((float)windowSize.x*loadingScreenHeight)/((float)windowSize.y*loadingScreenWidth), 0.0f, 0.0f, -1.0f, ((float)windowSize.x*loadingScreenHeight)/((float)windowSize.y*loadingScreenWidth), 0.0f, 1.0f }; for(int i = 0; i<24; i++) { quadData[i] = quadTemp[i]; } } fullscreen_quad_ab_loading->setDataElements(6, quadData); fullscreen_quad_loading = SharedVertexArrayObject(new VertexArrayObject); fullscreen_quad_loading->attachAllAttributes(fullscreen_quad_ab_loading); loadingShader = ShaderProgramCreator("loading") .attributeLocations(fullscreen_quad_loading->getAttributeLocations()).create(); loadingShader->use(); loadingShader->setUniform("time", 0.0f); loadingShader->setTexture("screen", loadingScreen, 0); loadingShader->setTexture("screenContinue", loadingContinueScreen, 1); fullscreen_quad_loading->render(); } glm::uvec2 Graphics::getWindowSize() { return windowSize; } void Graphics::render(double time) { if (!gameStart) { glBindFramebuffer(GL_FRAMEBUFFER, 0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glViewport(0, 0, windowSize.x, windowSize.y); loadingShader->use(); loadingShader->setUniform("time", float(time)); fullscreen_quad_loading->render(); } else { double nextLightUpdate = lastLightUpdate + lightUpdateDelay; if (time >= nextLightUpdate) { updateLights(); lastLightUpdate = time; } // At first render shadows std::vector depthViewProjectionMatrices = std::vector(framebuffer_directional.size()); if (renderShadows) { // update priorities for(unsigned int i = 0; i, int, int>> renderQueue = std::vector, int, int>>(maxShadowRenderCount); for(unsigned int i = 0; i std::get<1>(renderQueue.at(j))){ if (juse(); // render depth textures for point lights glViewport(0, 0, cube_size, cube_size); glm::mat4 depthProjectionMatrix_pointlights = glm::perspective(1.571f, (float)cube_size/(float)cube_size, 0.1f, 50.0f); glm::vec3 looking_directions[6] = {glm::vec3(1.0f, 0.0f, 0.0f), glm::vec3(-1.0f, 0.0f, 0.0f), glm::vec3(0.0f, 1.0f, 0.0f), glm::vec3(0.0f, -1.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f), glm::vec3(0.0f, 0.0f, -1.0f)}; glm::vec3 upvectors[6] = {glm::vec3(0.0f, -1.0f, 0.0f),glm::vec3(0.0f, -1.0f, 0.0f),glm::vec3(0.0f, 0.0f, -1.0f), glm::vec3(0.0f, 0.0f, -1.0f),glm::vec3(0.0f, -1.0f, 0.0f),glm::vec3(0.0f, -1.0f, 0.0f)}; framebuffer_cube->bind(); for (unsigned int i_pointlight = 0; i_pointlight < renderQueue.size(); i_pointlight++) { // check if queue points to a existing light if (std::get<0>(renderQueue.at(i_pointlight))) { // render each side of the cube glm::vec3 position = glm::vec3(0.0f); if (std::get<0>(renderQueue.at(i_pointlight))->isFlame()) { position = std::get<0>(renderQueue.at(i_pointlight))->getPosition(); position = glm::vec3(position.x + 0.75f*wind.x, position.y, position.z + 0.75f*wind.y); } else { position = std::get<0>(renderQueue.at(i_pointlight))->getPosition(); } for (int i_face = 0; i_face<6; i_face++) { glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i_face, depth_cubeMaps.at(std::get<2>(renderQueue.at(i_pointlight)))->getObjectName(), 0); glClear(GL_DEPTH_BUFFER_BIT); glm::mat4 viewMatrix = glm::lookAt(position, position + looking_directions[i_face], upvectors[i_face]); glm::mat4 depthViewProjectionMatrix_face = depthProjectionMatrix_pointlights * viewMatrix; std::vector viewMatrixVector = std::vector(1); viewMatrixVector.at(0) = viewMatrix; level->render(depthCubeShader, false, std::get<0>(renderQueue.at(i_pointlight))->getPosition(), 1, &depthViewProjectionMatrix_face, &viewMatrixVector); if (!framebuffer_cube->isFrameBufferObjectComplete()) { printf("Framebuffer incomplete, unknown error occured during shadow generation!\n"); } } } } glViewport(0, 0, windowSize.x, windowSize.y); // render depth textures for sun float sunAngle = glm::dot(glm::vec3(0.0f, 1.0f, 0.0f), glm::normalize(level->getDirectionalLight()->getPosition())); glm::vec3 sunVector = (level->getCameraCenter()->getPosition() + level->getDirectionalLight()->getPosition()); if (sunAngle > 0.0f) { depthShader->use(); for (unsigned int i = 0; ibind(); glClear(GL_DEPTH_BUFFER_BIT); float projection_size = 0.0f; switch(i) { case 0: projection_size = 10.0f; break; case 1: projection_size = 20.0f; break; case 2: projection_size = 40.0f; break; case 3: projection_size = 60.0f; break; case 4: projection_size = farPlane/1.5f; break; } depthViewProjectionMatrices.at(i) = glm::ortho(-projection_size, projection_size, -projection_size, projection_size, -farPlane/1.5f, farPlane/1.5f) * glm::lookAt(sunVector, level->getCameraCenter()->getPosition(), glm::vec3(0,1,0)); level->render(depthShader, false, level->getCameraCenter()->getPosition(), -1, &depthViewProjectionMatrices.at(i)); if (!framebuffer_directional.at(i)->isFrameBufferObjectComplete()) { printf("Framebuffer incomplete, unknown error occured during shadow generation!\n"); } } } } // lighting render pass glBindFramebuffer(GL_FRAMEBUFFER, 0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); //wind double nextWindUpdate = lastWindUpdate + lightUpdateDelay; if (time >= nextWindUpdate) { const float windTargetEnd = 0.7f; windTarget = static_cast(rand()) / static_cast(RAND_MAX/pow(windTargetEnd, 2)); windTarget = sqrt(windTarget); windTarget *= 0.8f*pow(sin(0.1f*time), 2) +0.2f; const float windDirectionXEnd = 0.5f; float windDirectionX = static_cast(rand()) / static_cast(RAND_MAX/pow(windDirectionXEnd, 2)); windDirectionX = sqrt(windDirectionX); const float windDirectionYEnd = 0.5f; float windDirectionY = static_cast(rand()) / static_cast(RAND_MAX/pow(windDirectionYEnd, 2)); windDirectionY = sqrt(windDirectionY); windDirectionTarget = glm::vec2(windDirectionX, windDirectionY); lastWindUpdate = time; } const float windApproachSpeed= 0.0005f; if (windApproachSpeed*static_cast(time)>1.0f) { wind = glm::normalize(windDirection)*windTarget; windDirection = windDirectionTarget; } else { windDirection.x = windDirection.x + windApproachSpeed*static_cast(time)*windDirectionTarget.x - windDirection.x; windDirection.y = windDirection.y + windApproachSpeed*static_cast(time)*windDirectionTarget.y - windDirection.x; wind = wind + (windApproachSpeed*static_cast(time)) * (glm::normalize(windDirection)*windTarget - wind); } //set view and projection matrix glm::mat4 lightingViewProjectionMatrix = glm::perspective(1.571f, (float)windowSize.x/(float)windowSize.y, 0.1f, farPlane) * buildViewMatrix(level); //render skydome skydomeShader->use(); // set fog Parameters skydomeShader->setUniform("cameraCenter", level->getCameraCenter()->getPosition()); skydomeShader->setUniform("directionalVector", level->getDirectionalLight()->getPosition()); level->getSkydome()->render(skydomeShader, false, &lightingViewProjectionMatrix); lightingShader->use(); // convert texture to homogenouse coordinates glm::mat4 biasMatrix( 0.5, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.5, 0.5, 0.5, 1.0 ); std::vector depthBiasVPs = std::vector(depthViewProjectionMatrices.size()); for (unsigned int i = 0; isetUniform("cameraCenter", level->getCameraCenter()->getPosition()); if(level->getDirectionalLight()) { lightingShader->setUniform("directionalLightVector", level->getDirectionalLight()->getPosition()); } // set Material Parameters lightingShader->setUniform("camera", level->getPhysics()->getCameraPosition()); textureMovementPosition += wind/5.0f; lightingShader->setUniform("movingTextureOffset", textureMovementPosition); lightingShader->setUniform("movement", wind); lightingShader->setUniform("time", (float) time); if (renderWorld) { // render the level level->enqueueObjects(this); for (unsigned int i = 0; isize(); i++) { bool parametersSet = false; for(unsigned int j = 0; jat(i).size() != 0) { if (!parametersSet) { parametersSet = true; Material* material = renderQueue.at(j)->at(i).at(0)->getMaterial(); if (material->isMoving()) { lightingShader->setUniform("movingTexture", true); } else { lightingShader->setUniform("movingTexture", false); } lightingShader->setUniform("uTexture", material->getTextureUnit()); lightingShader->setUniform("ambientFactor", material->getAmbientFactor()); lightingShader->setUniform("diffuseFactor", material->getDiffuseFactor()); lightingShader->setUniform("specularFactor", material->getSpecularFactor()); lightingShader->setUniform("shininess", material->getShininess()); } for(unsigned int k = 0; kat(i).size(); k++) { renderQueue.at(j)->at(i).at(k)->render(lightingShader, true, &lightingViewProjectionMatrix, &depthBiasVPs); } } } } // render water plane last for correct transparency if (level->getWaterPlane()) { Material* material = level->getWaterPlane()->getMaterial(); if (material->isMoving()) { lightingShader->setUniform("movingTexture", true); } else { lightingShader->setUniform("movingTexture", false); } lightingShader->setUniform("uTexture", material->getTextureUnit()); lightingShader->setUniform("ambientFactor", material->getAmbientFactor()); lightingShader->setUniform("diffuseFactor", material->getDiffuseFactor()); lightingShader->setUniform("specularFactor", material->getSpecularFactor()); lightingShader->setUniform("shininess", material->getShininess()); level->getWaterPlane()->render(lightingShader, true, &lightingViewProjectionMatrix, &depthBiasVPs); } renderQueue.clear(); } if (renderDebug) { debugDrawer.setDebugMode(btIDebugDraw::DBG_DrawWireframe); level->getPhysics()->getWorld()->debugDrawWorld(); debugDrawer.setDebugMode(btIDebugDraw::DBG_NoDebug); unsigned int data_count = debugDrawer.getData()->size(); float* debugData = new float[data_count]; for (unsigned int i = 0; iat(i); } debug_ab->setDataElements(data_count/6, debugData); debugDrawer.clearData(); delete[] debugData; debugShader->use(); debugShader->setUniform("viewProjectionMatrix", lightingViewProjectionMatrix); debug_vao->render(); } // draw flames on top if (renderFlames) { flameShader->use(); // cull faces to get consistent color while using alpha glEnable(GL_CULL_FACE); glCullFace(GL_BACK); // draw with colors for(unsigned int i = 0; irender(flameShader, lightingViewProjectionMatrix, float(time), true, wind); } glDisable(GL_CULL_FACE); framebuffer_light->bind(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glBindFramebuffer(GL_READ_FRAMEBUFFER, 0); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, framebuffer_light->getObjectName()); glBlitFramebuffer(0, 0, windowSize.x, windowSize.y, 0, 0, windowSize.x, windowSize.y, GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT, GL_NEAREST); // draw slightly larger only for stencil buffer to blur edges glEnable(GL_STENCIL_TEST); glStencilFunc(GL_ALWAYS, 1, 0xFF); //Set any stencil to 1 glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE); glStencilMask(0xFF);//write to stencil buffer glClear(GL_STENCIL_BUFFER_BIT);//clear stencil buffer for(unsigned int i = 0; irender(flameShader, lightingViewProjectionMatrix, float(time), false, wind); } glStencilFunc(GL_EQUAL, 1, 0xFF); //Pass test if stencil value is 1 glStencilMask(0x00);// don't write to stencil buffer flamePostShader->use(); fullscreen_quad->render(); glDepthMask(GL_TRUE); glDisable(GL_STENCIL_TEST); glBindFramebuffer(GL_FRAMEBUFFER, 0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glBindFramebuffer(GL_READ_FRAMEBUFFER, framebuffer_light->getObjectName()); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); glBlitFramebuffer(0, 0, windowSize.x, windowSize.y, 0, 0, windowSize.x, windowSize.y, GL_COLOR_BUFFER_BIT, GL_NEAREST); } } } void Graphics::updateLights() { std::vector> oldClosestLights = std::vector>(*closestLights); closestLights = level->getClosestLights(); if (closestLights->size() > 0) { lightingShader->use(); lightingShader->setUniform("lightCount", (int) closestLights->size()); lightingShader->setUniform("maxShadowRenderCount", min((int)closestLights->size(), maxShadowSampleCount)); // find new closest lights for the shadow render queue unsigned int i = 0; std::vector> compareClosestLights = std::vector>(*closestLights); while(igetCameraCenter()->getPosition(), shadowRenderQueue.at(i).light->getPosition()); shadowRenderQueue.at(i).priority = (int) 100*std::exp(5.0f - 0.1f * distance); } // Build light position array glm::vec3 lightSources[shadowRenderQueue.size()]; for(unsigned int i = 0; igetPosition(); } glUniform3fv(lightingShader->getUniformLocation("lightSources"), sizeof(lightSources), (GLfloat*) lightSources); // Build light colour array glm::vec3 lightColours[shadowRenderQueue.size()]; for(unsigned int i = 0; igetColour(); } glUniform3fv(lightingShader->getUniformLocation("lightColors"), sizeof(lightColours), (GLfloat*) lightColours); // Build light attenuation array float lightIntensities[shadowRenderQueue.size()]; for(unsigned int i = 0; igetIntensity(); } glUniform1fv(lightingShader->getUniformLocation("lightIntensities"), sizeof(lightIntensities), (GLfloat*) lightIntensities); bool isFlame[shadowRenderQueue.size()]; closestFlames = std::vector(); for(unsigned int i = 0; iisFlame()) { closestFlames.push_back(shadowRenderQueue.at(i).light->getFlame()); isFlame[i] = true; } else { isFlame[i] = false; } } glUniform1iv(lightingShader->getUniformLocation("isFlame"), sizeof(isFlame), (GLint*) isFlame); } } void Graphics::saveWindowSize(glm::uvec2 windowSize) { this->windowSize = windowSize; } void Graphics::resize(glm::uvec2 windowSize) { this->windowSize = windowSize; if (gameStart) { for (unsigned int i = 0; iresize(glm::vec2(windowSize.x, windowSize.y)); } light_fbo_color_texture->resize(windowSize); light_fbo_depth_texture->resize(windowSize); flamePostShader->setUniform("windowSizeX", int(windowSize.x)); flamePostShader->setUniform("windowSizeY", int(windowSize.y)); bindTextureUnits(); } else { float quadData[24]; if (loadingScreenWidth/loadingScreenHeight < ((float)windowSize.x)/((float)windowSize.y)) { float quadTemp[24] ={ -(((float)windowSize.y*loadingScreenWidth)/((float)windowSize.x*loadingScreenHeight)), 1.0f, 0.0f, 1.0f, (((float)windowSize.y*loadingScreenWidth)/((float)windowSize.x*loadingScreenHeight)), 1.0f, 1.0f, 1.0f, (((float)windowSize.y*loadingScreenWidth)/((float)windowSize.x*loadingScreenHeight)), -1.0f, 1.0f, 0.0f, (((float)windowSize.y*loadingScreenWidth)/((float)windowSize.x*loadingScreenHeight)), -1.0f, 1.0f, 0.0f, -(((float)windowSize.y*loadingScreenWidth)/((float)windowSize.x*loadingScreenHeight)), -1.0f, 0.0f, 0.0f, -(((float)windowSize.y*loadingScreenWidth)/((float)windowSize.x*loadingScreenHeight)), 1.0f, 0.0f, 1.0f }; for(int i = 0; i<24; i++) { quadData[i] = quadTemp[i]; } } else { float quadTemp[24] = { -1.0f, ((float)windowSize.x*loadingScreenHeight)/((float)windowSize.y*loadingScreenWidth), 0.0f, 1.0f, 1.0f, ((float)windowSize.x*loadingScreenHeight)/((float)windowSize.y*loadingScreenWidth), 1.0f, 1.0f, 1.0f, -((float)windowSize.x*loadingScreenHeight)/((float)windowSize.y*loadingScreenWidth), 1.0f, 0.0f, 1.0f, -((float)windowSize.x*loadingScreenHeight)/((float)windowSize.y*loadingScreenWidth), 1.0f, 0.0f, -1.0f, -((float)windowSize.x*loadingScreenHeight)/((float)windowSize.y*loadingScreenWidth), 0.0f, 0.0f, -1.0f, ((float)windowSize.x*loadingScreenHeight)/((float)windowSize.y*loadingScreenWidth), 0.0f, 1.0f }; for(int i = 0; i<24; i++) { quadData[i] = quadTemp[i]; } } fullscreen_quad_ab_loading->setDataElements(6, quadData); fullscreen_quad_loading = SharedVertexArrayObject(new VertexArrayObject); fullscreen_quad_loading->attachAllAttributes(fullscreen_quad_ab_loading); } } glm::mat4 Graphics::buildViewMatrix(Level* level) { //construct lookAt (cameraPosition = cameraCenter + cameraVector) if(level->getCamera()->getIsPhysicsCamera()) return glm::lookAt(level->getCamera()->getPosition(), level->getCamera()->getPosition() + level->getCamera()->getDirection(), glm::vec3(0.0f, 1.0f, 0.0f)); return glm::lookAt((level->getCameraCenter()->getPosition() + level->getCamera()->getVector()), level->getCameraCenter()->getPosition(), glm::vec3(0.0f, 1.0f, 0.0f)); } float Graphics::getFarPlane() { return farPlane; } void Graphics::saveDepthBufferToDisk(int face, std::string filename) { printf("Starting saving of depth buffer...\n"); float *depthbuffer = new float[1024*1024]; std::vector image (1024 * 1024 * 4); glGetTexImage(GL_TEXTURE_CUBE_MAP_POSITIVE_X + face, 0, GL_DEPTH_COMPONENT, GL_FLOAT, depthbuffer); for (unsigned int i = 0; i<1024*1024; i++) { image[i * 4 + 0] = depthbuffer[i] * 255; image[i * 4 + 1] = depthbuffer[i] * 255; image[i * 4 + 2] = depthbuffer[i] * 255; image[i * 4 + 3] = 255; } unsigned error = lodepng::encode(filename.c_str(), image, 1024, 1024); if (error) { std::cout << "Encoder error " << error << ": " << lodepng_error_text(error) << std::endl; } else { printf("Saving complete!\n"); } delete [] depthbuffer; } void Graphics::startGame() { gameStart = true; } void Graphics::setRenderShadows(bool state) { if(!state) { for(unsigned int i = 0; ibind(); glClear(GL_DEPTH_BUFFER_BIT); } for(unsigned int i_pointlight = 0; i_pointlightgetObjectName(), 0); glClear(GL_DEPTH_BUFFER_BIT); } } } renderShadows = state; } void Graphics::setRenderFlames(bool state) { renderFlames = state; } bool Graphics::getRenderShadows() { return renderShadows; } bool Graphics::getRenderFlames() { return renderFlames; } void Graphics::setRenderDebug(bool state) { renderDebug = state; } bool Graphics::getRenderDebug() { return renderDebug; } void Graphics::setRenderWorld(bool state) { renderWorld = state; } bool Graphics::getRenderWorld() { return renderWorld; } void Graphics::enqueueObjects(std::vector>* queue){ renderQueue.push_back(queue); } void Graphics::initShadowRenderQueue() { closestLights = level->getClosestLights(); int maxLights = min((int)closestLights->size(), maxShadowSampleCount); shadowRenderQueue = std::vector(maxLights); glViewport(0, 0, cube_size, cube_size); glm::mat4 depthProjectionMatrix_pointlights = glm::perspective(1.571f, (float)cube_size/(float)cube_size, 0.1f, 50.0f); glm::vec3 looking_directions[6] = {glm::vec3(1.0f, 0.0f, 0.0f), glm::vec3(-1.0f, 0.0f, 0.0f), glm::vec3(0.0f, 1.0f, 0.0f), glm::vec3(0.0f, -1.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f), glm::vec3(0.0f, 0.0f, -1.0f)}; glm::vec3 upvectors[6] = {glm::vec3(0.0f, -1.0f, 0.0f),glm::vec3(0.0f, -1.0f, 0.0f),glm::vec3(0.0f, 0.0f, -1.0f), glm::vec3(0.0f, 0.0f, -1.0f),glm::vec3(0.0f, -1.0f, 0.0f),glm::vec3(0.0f, -1.0f, 0.0f)}; framebuffer_cube->bind(); for(unsigned int i = 0; iat(i); shadowRenderQueue.at(i).currentPriority = 0; // render depth textures for point lights depthCubeShader->use(); // render each side of the cube for (int i_face = 0; i_face<6; i_face++) { glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i_face, depth_cubeMaps.at(i)->getObjectName(), 0); glClear(GL_DEPTH_BUFFER_BIT); glm::mat4 viewMatrix = glm::lookAt(shadowRenderQueue.at(i).light->getPosition(), shadowRenderQueue.at(i).light->getPosition() + looking_directions[i_face], upvectors[i_face]); glm::mat4 depthViewProjectionMatrix_face = depthProjectionMatrix_pointlights * viewMatrix; std::vector viewMatrixVector = std::vector(); viewMatrixVector.push_back(viewMatrix); level->render(depthCubeShader, false, shadowRenderQueue.at(i).light->getPosition(), 1, &depthViewProjectionMatrix_face, &viewMatrixVector); if (!framebuffer_cube->isFrameBufferObjectComplete()) { printf("Framebuffer incomplete, unknown error occured during shadow generation!\n"); } } } }