Saxum/extern/bullet/Extras/CDTestFramework/Opcode/Ice/IceMatrix4x4.h
Fabian Klemp aeb6218d2d Renaming.
2014-10-24 11:49:46 +02:00

472 lines
22 KiB
C++

/*
* ICE / OPCODE - Optimized Collision Detection
* http://www.codercorner.com/Opcode.htm
*
* Copyright (c) 2001-2008 Pierre Terdiman, pierre@codercorner.com
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Contains code for 4x4 matrices.
* \file IceMatrix4x4.h
* \author Pierre Terdiman
* \date April, 4, 2000
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Include Guard
#ifndef __ICEMATRIX4X4_H__
#define __ICEMATRIX4X4_H__
// Forward declarations
class PRS;
class PR;
#define MATRIX4X4_EPSILON (1.0e-7f)
class ICEMATHS_API Matrix4x4
{
// void LUBackwardSubstitution( sdword *indx, float* b );
// void LUDecomposition( sdword* indx, float* d );
public:
//! Empty constructor.
inline_ Matrix4x4() {}
//! Constructor from 16 values
inline_ Matrix4x4( float m00, float m01, float m02, float m03,
float m10, float m11, float m12, float m13,
float m20, float m21, float m22, float m23,
float m30, float m31, float m32, float m33)
{
m[0][0] = m00; m[0][1] = m01; m[0][2] = m02; m[0][3] = m03;
m[1][0] = m10; m[1][1] = m11; m[1][2] = m12; m[1][3] = m13;
m[2][0] = m20; m[2][1] = m21; m[2][2] = m22; m[2][3] = m23;
m[3][0] = m30; m[3][1] = m31; m[3][2] = m32; m[3][3] = m33;
}
//! Copy constructor
inline_ Matrix4x4(const Matrix4x4& mat) { CopyMemory(m, &mat.m, 16*sizeof(float)); }
//! Destructor.
inline_ ~Matrix4x4() {}
//! Assign values (rotation only)
inline_ Matrix4x4& Set( float m00, float m01, float m02,
float m10, float m11, float m12,
float m20, float m21, float m22)
{
m[0][0] = m00; m[0][1] = m01; m[0][2] = m02;
m[1][0] = m10; m[1][1] = m11; m[1][2] = m12;
m[2][0] = m20; m[2][1] = m21; m[2][2] = m22;
return *this;
}
//! Assign values
inline_ Matrix4x4& Set( float m00, float m01, float m02, float m03,
float m10, float m11, float m12, float m13,
float m20, float m21, float m22, float m23,
float m30, float m31, float m32, float m33)
{
m[0][0] = m00; m[0][1] = m01; m[0][2] = m02; m[0][3] = m03;
m[1][0] = m10; m[1][1] = m11; m[1][2] = m12; m[1][3] = m13;
m[2][0] = m20; m[2][1] = m21; m[2][2] = m22; m[2][3] = m23;
m[3][0] = m30; m[3][1] = m31; m[3][2] = m32; m[3][3] = m33;
return *this;
}
//! Copy from a Matrix4x4
inline_ void Copy(const Matrix4x4& source) { CopyMemory(m, source.m, 16*sizeof(float)); }
// Row-column access
//! Returns a row.
inline_ void GetRow(const udword r, HPoint& p) const { p.x=m[r][0]; p.y=m[r][1]; p.z=m[r][2]; p.w=m[r][3]; }
//! Returns a row.
inline_ void GetRow(const udword r, Point& p) const { p.x=m[r][0]; p.y=m[r][1]; p.z=m[r][2]; }
//! Returns a row.
inline_ const HPoint& GetRow(const udword r) const { return *(const HPoint*)&m[r][0]; }
//! Returns a row.
inline_ HPoint& GetRow(const udword r) { return *(HPoint*)&m[r][0]; }
//! Sets a row.
inline_ void SetRow(const udword r, const HPoint& p) { m[r][0]=p.x; m[r][1]=p.y; m[r][2]=p.z; m[r][3]=p.w; }
//! Sets a row.
inline_ void SetRow(const udword r, const Point& p) { m[r][0]=p.x; m[r][1]=p.y; m[r][2]=p.z; m[r][3]= (r!=3) ? 0.0f : 1.0f; }
//! Returns a column.
inline_ void GetCol(const udword c, HPoint& p) const { p.x=m[0][c]; p.y=m[1][c]; p.z=m[2][c]; p.w=m[3][c]; }
//! Returns a column.
inline_ void GetCol(const udword c, Point& p) const { p.x=m[0][c]; p.y=m[1][c]; p.z=m[2][c]; }
//! Sets a column.
inline_ void SetCol(const udword c, const HPoint& p) { m[0][c]=p.x; m[1][c]=p.y; m[2][c]=p.z; m[3][c]=p.w; }
//! Sets a column.
inline_ void SetCol(const udword c, const Point& p) { m[0][c]=p.x; m[1][c]=p.y; m[2][c]=p.z; m[3][c]= (c!=3) ? 0.0f : 1.0f; }
// Translation
//! Returns the translation part of the matrix.
inline_ const HPoint& GetTrans() const { return GetRow(3); }
//! Gets the translation part of the matrix
inline_ void GetTrans(Point& p) const { p.x=m[3][0]; p.y=m[3][1]; p.z=m[3][2]; }
//! Sets the translation part of the matrix, from a Point.
inline_ void SetTrans(const Point& p) { m[3][0]=p.x; m[3][1]=p.y; m[3][2]=p.z; }
//! Sets the translation part of the matrix, from a HPoint.
inline_ void SetTrans(const HPoint& p) { m[3][0]=p.x; m[3][1]=p.y; m[3][2]=p.z; m[3][3]=p.w; }
//! Sets the translation part of the matrix, from floats.
inline_ void SetTrans(float tx, float ty, float tz) { m[3][0]=tx; m[3][1]=ty; m[3][2]=tz; }
// Scale
//! Sets the scale from a Point. The point is put on the diagonal.
inline_ void SetScale(const Point& p) { m[0][0]=p.x; m[1][1]=p.y; m[2][2]=p.z; }
//! Sets the scale from floats. Values are put on the diagonal.
inline_ void SetScale(float sx, float sy, float sz) { m[0][0]=sx; m[1][1]=sy; m[2][2]=sz; }
//! Scales from a Point. Each row is multiplied by a component.
void Scale(const Point& p)
{
m[0][0] *= p.x; m[1][0] *= p.y; m[2][0] *= p.z;
m[0][1] *= p.x; m[1][1] *= p.y; m[2][1] *= p.z;
m[0][2] *= p.x; m[1][2] *= p.y; m[2][2] *= p.z;
}
//! Scales from floats. Each row is multiplied by a value.
void Scale(float sx, float sy, float sz)
{
m[0][0] *= sx; m[1][0] *= sy; m[2][0] *= sz;
m[0][1] *= sx; m[1][1] *= sy; m[2][1] *= sz;
m[0][2] *= sx; m[1][2] *= sy; m[2][2] *= sz;
}
/*
//! Returns a row.
inline_ HPoint GetRow(const udword row) const { return mRow[row]; }
//! Sets a row.
inline_ Matrix4x4& SetRow(const udword row, const HPoint& p) { mRow[row] = p; return *this; }
//! Sets a row.
Matrix4x4& SetRow(const udword row, const Point& p)
{
m[row][0] = p.x;
m[row][1] = p.y;
m[row][2] = p.z;
m[row][3] = (row != 3) ? 0.0f : 1.0f;
return *this;
}
//! Returns a column.
HPoint GetCol(const udword col) const
{
HPoint Res;
Res.x = m[0][col];
Res.y = m[1][col];
Res.z = m[2][col];
Res.w = m[3][col];
return Res;
}
//! Sets a column.
Matrix4x4& SetCol(const udword col, const HPoint& p)
{
m[0][col] = p.x;
m[1][col] = p.y;
m[2][col] = p.z;
m[3][col] = p.w;
return *this;
}
//! Sets a column.
Matrix4x4& SetCol(const udword col, const Point& p)
{
m[0][col] = p.x;
m[1][col] = p.y;
m[2][col] = p.z;
m[3][col] = (col != 3) ? 0.0f : 1.0f;
return *this;
}
*/
//! Computes the trace. The trace is the sum of the 4 diagonal components.
inline_ float Trace() const { return m[0][0] + m[1][1] + m[2][2] + m[3][3]; }
//! Computes the trace of the upper 3x3 matrix.
inline_ float Trace3x3() const { return m[0][0] + m[1][1] + m[2][2]; }
//! Clears the matrix.
inline_ void Zero() { ZeroMemory(&m, sizeof(m)); }
//! Sets the identity matrix.
inline_ void Identity() { Zero(); m[0][0] = m[1][1] = m[2][2] = m[3][3] = 1.0f; }
//! Checks for identity
inline_ bool IsIdentity() const
{
if(IR(m[0][0])!=IEEE_1_0) return false;
if(IR(m[0][1])!=0) return false;
if(IR(m[0][2])!=0) return false;
if(IR(m[0][3])!=0) return false;
if(IR(m[1][0])!=0) return false;
if(IR(m[1][1])!=IEEE_1_0) return false;
if(IR(m[1][2])!=0) return false;
if(IR(m[1][3])!=0) return false;
if(IR(m[2][0])!=0) return false;
if(IR(m[2][1])!=0) return false;
if(IR(m[2][2])!=IEEE_1_0) return false;
if(IR(m[2][3])!=0) return false;
if(IR(m[3][0])!=0) return false;
if(IR(m[3][1])!=0) return false;
if(IR(m[3][2])!=0) return false;
if(IR(m[3][3])!=IEEE_1_0) return false;
return true;
}
//! Checks matrix validity
inline_ BOOL IsValid() const
{
for(udword j=0;j<4;j++)
{
for(udword i=0;i<4;i++)
{
if(!IsValidFloat(m[j][i])) return FALSE;
}
}
return TRUE;
}
//! Sets a rotation matrix around the X axis.
void RotX(float angle) { float Cos = cosf(angle), Sin = sinf(angle); Identity(); m[1][1] = m[2][2] = Cos; m[2][1] = -Sin; m[1][2] = Sin; }
//! Sets a rotation matrix around the Y axis.
void RotY(float angle) { float Cos = cosf(angle), Sin = sinf(angle); Identity(); m[0][0] = m[2][2] = Cos; m[2][0] = Sin; m[0][2] = -Sin; }
//! Sets a rotation matrix around the Z axis.
void RotZ(float angle) { float Cos = cosf(angle), Sin = sinf(angle); Identity(); m[0][0] = m[1][1] = Cos; m[1][0] = -Sin; m[0][1] = Sin; }
//! Makes a rotation matrix about an arbitrary axis
Matrix4x4& Rot(float angle, Point& p1, Point& p2);
//! Transposes the matrix.
void Transpose()
{
IR(m[1][0]) ^= IR(m[0][1]); IR(m[0][1]) ^= IR(m[1][0]); IR(m[1][0]) ^= IR(m[0][1]);
IR(m[2][0]) ^= IR(m[0][2]); IR(m[0][2]) ^= IR(m[2][0]); IR(m[2][0]) ^= IR(m[0][2]);
IR(m[3][0]) ^= IR(m[0][3]); IR(m[0][3]) ^= IR(m[3][0]); IR(m[3][0]) ^= IR(m[0][3]);
IR(m[1][2]) ^= IR(m[2][1]); IR(m[2][1]) ^= IR(m[1][2]); IR(m[1][2]) ^= IR(m[2][1]);
IR(m[1][3]) ^= IR(m[3][1]); IR(m[3][1]) ^= IR(m[1][3]); IR(m[1][3]) ^= IR(m[3][1]);
IR(m[2][3]) ^= IR(m[3][2]); IR(m[3][2]) ^= IR(m[2][3]); IR(m[2][3]) ^= IR(m[3][2]);
}
//! Computes a cofactor. Used for matrix inversion.
float CoFactor(udword row, udword col) const;
//! Computes the determinant of the matrix.
float Determinant() const;
//! Inverts the matrix. Determinant must be different from zero, else matrix can't be inverted.
Matrix4x4& Invert();
// Matrix& ComputeAxisMatrix(Point& axis, float angle);
// Cast operators
//! Casts a Matrix4x4 to a Matrix3x3.
inline_ operator Matrix3x3() const
{
return Matrix3x3(
m[0][0], m[0][1], m[0][2],
m[1][0], m[1][1], m[1][2],
m[2][0], m[2][1], m[2][2]);
}
//! Casts a Matrix4x4 to a Quat.
operator Quat() const;
//! Casts a Matrix4x4 to a PR.
operator PR() const;
// Arithmetic operators
//! Operator for Matrix4x4 Plus = Matrix4x4 + Matrix4x4;
inline_ Matrix4x4 operator+(const Matrix4x4& mat) const
{
return Matrix4x4(
m[0][0]+mat.m[0][0], m[0][1]+mat.m[0][1], m[0][2]+mat.m[0][2], m[0][3]+mat.m[0][3],
m[1][0]+mat.m[1][0], m[1][1]+mat.m[1][1], m[1][2]+mat.m[1][2], m[1][3]+mat.m[1][3],
m[2][0]+mat.m[2][0], m[2][1]+mat.m[2][1], m[2][2]+mat.m[2][2], m[2][3]+mat.m[2][3],
m[3][0]+mat.m[3][0], m[3][1]+mat.m[3][1], m[3][2]+mat.m[3][2], m[3][3]+mat.m[3][3]);
}
//! Operator for Matrix4x4 Minus = Matrix4x4 - Matrix4x4;
inline_ Matrix4x4 operator-(const Matrix4x4& mat) const
{
return Matrix4x4(
m[0][0]-mat.m[0][0], m[0][1]-mat.m[0][1], m[0][2]-mat.m[0][2], m[0][3]-mat.m[0][3],
m[1][0]-mat.m[1][0], m[1][1]-mat.m[1][1], m[1][2]-mat.m[1][2], m[1][3]-mat.m[1][3],
m[2][0]-mat.m[2][0], m[2][1]-mat.m[2][1], m[2][2]-mat.m[2][2], m[2][3]-mat.m[2][3],
m[3][0]-mat.m[3][0], m[3][1]-mat.m[3][1], m[3][2]-mat.m[3][2], m[3][3]-mat.m[3][3]);
}
//! Operator for Matrix4x4 Mul = Matrix4x4 * Matrix4x4;
inline_ Matrix4x4 operator*(const Matrix4x4& mat) const
{
return Matrix4x4(
m[0][0]*mat.m[0][0] + m[0][1]*mat.m[1][0] + m[0][2]*mat.m[2][0] + m[0][3]*mat.m[3][0],
m[0][0]*mat.m[0][1] + m[0][1]*mat.m[1][1] + m[0][2]*mat.m[2][1] + m[0][3]*mat.m[3][1],
m[0][0]*mat.m[0][2] + m[0][1]*mat.m[1][2] + m[0][2]*mat.m[2][2] + m[0][3]*mat.m[3][2],
m[0][0]*mat.m[0][3] + m[0][1]*mat.m[1][3] + m[0][2]*mat.m[2][3] + m[0][3]*mat.m[3][3],
m[1][0]*mat.m[0][0] + m[1][1]*mat.m[1][0] + m[1][2]*mat.m[2][0] + m[1][3]*mat.m[3][0],
m[1][0]*mat.m[0][1] + m[1][1]*mat.m[1][1] + m[1][2]*mat.m[2][1] + m[1][3]*mat.m[3][1],
m[1][0]*mat.m[0][2] + m[1][1]*mat.m[1][2] + m[1][2]*mat.m[2][2] + m[1][3]*mat.m[3][2],
m[1][0]*mat.m[0][3] + m[1][1]*mat.m[1][3] + m[1][2]*mat.m[2][3] + m[1][3]*mat.m[3][3],
m[2][0]*mat.m[0][0] + m[2][1]*mat.m[1][0] + m[2][2]*mat.m[2][0] + m[2][3]*mat.m[3][0],
m[2][0]*mat.m[0][1] + m[2][1]*mat.m[1][1] + m[2][2]*mat.m[2][1] + m[2][3]*mat.m[3][1],
m[2][0]*mat.m[0][2] + m[2][1]*mat.m[1][2] + m[2][2]*mat.m[2][2] + m[2][3]*mat.m[3][2],
m[2][0]*mat.m[0][3] + m[2][1]*mat.m[1][3] + m[2][2]*mat.m[2][3] + m[2][3]*mat.m[3][3],
m[3][0]*mat.m[0][0] + m[3][1]*mat.m[1][0] + m[3][2]*mat.m[2][0] + m[3][3]*mat.m[3][0],
m[3][0]*mat.m[0][1] + m[3][1]*mat.m[1][1] + m[3][2]*mat.m[2][1] + m[3][3]*mat.m[3][1],
m[3][0]*mat.m[0][2] + m[3][1]*mat.m[1][2] + m[3][2]*mat.m[2][2] + m[3][3]*mat.m[3][2],
m[3][0]*mat.m[0][3] + m[3][1]*mat.m[1][3] + m[3][2]*mat.m[2][3] + m[3][3]*mat.m[3][3]);
}
//! Operator for HPoint Mul = Matrix4x4 * HPoint;
inline_ HPoint operator*(const HPoint& v) const { return HPoint(GetRow(0)|v, GetRow(1)|v, GetRow(2)|v, GetRow(3)|v); }
//! Operator for Point Mul = Matrix4x4 * Point;
inline_ Point operator*(const Point& v) const
{
return Point( m[0][0]*v.x + m[0][1]*v.y + m[0][2]*v.z + m[0][3],
m[1][0]*v.x + m[1][1]*v.y + m[1][2]*v.z + m[1][3],
m[2][0]*v.x + m[2][1]*v.y + m[2][2]*v.z + m[2][3] );
}
//! Operator for Matrix4x4 Scale = Matrix4x4 * float;
inline_ Matrix4x4 operator*(float s) const
{
return Matrix4x4(
m[0][0]*s, m[0][1]*s, m[0][2]*s, m[0][3]*s,
m[1][0]*s, m[1][1]*s, m[1][2]*s, m[1][3]*s,
m[2][0]*s, m[2][1]*s, m[2][2]*s, m[2][3]*s,
m[3][0]*s, m[3][1]*s, m[3][2]*s, m[3][3]*s);
}
//! Operator for Matrix4x4 Scale = float * Matrix4x4;
inline_ friend Matrix4x4 operator*(float s, const Matrix4x4& mat)
{
return Matrix4x4(
s*mat.m[0][0], s*mat.m[0][1], s*mat.m[0][2], s*mat.m[0][3],
s*mat.m[1][0], s*mat.m[1][1], s*mat.m[1][2], s*mat.m[1][3],
s*mat.m[2][0], s*mat.m[2][1], s*mat.m[2][2], s*mat.m[2][3],
s*mat.m[3][0], s*mat.m[3][1], s*mat.m[3][2], s*mat.m[3][3]);
}
//! Operator for Matrix4x4 Div = Matrix4x4 / float;
inline_ Matrix4x4 operator/(float s) const
{
if(s) s = 1.0f / s;
return Matrix4x4(
m[0][0]*s, m[0][1]*s, m[0][2]*s, m[0][3]*s,
m[1][0]*s, m[1][1]*s, m[1][2]*s, m[1][3]*s,
m[2][0]*s, m[2][1]*s, m[2][2]*s, m[2][3]*s,
m[3][0]*s, m[3][1]*s, m[3][2]*s, m[3][3]*s);
}
//! Operator for Matrix4x4 Div = float / Matrix4x4;
inline_ friend Matrix4x4 operator/(float s, const Matrix4x4& mat)
{
return Matrix4x4(
s/mat.m[0][0], s/mat.m[0][1], s/mat.m[0][2], s/mat.m[0][3],
s/mat.m[1][0], s/mat.m[1][1], s/mat.m[1][2], s/mat.m[1][3],
s/mat.m[2][0], s/mat.m[2][1], s/mat.m[2][2], s/mat.m[2][3],
s/mat.m[3][0], s/mat.m[3][1], s/mat.m[3][2], s/mat.m[3][3]);
}
//! Operator for Matrix4x4 += Matrix4x4;
inline_ Matrix4x4& operator+=(const Matrix4x4& mat)
{
m[0][0]+=mat.m[0][0]; m[0][1]+=mat.m[0][1]; m[0][2]+=mat.m[0][2]; m[0][3]+=mat.m[0][3];
m[1][0]+=mat.m[1][0]; m[1][1]+=mat.m[1][1]; m[1][2]+=mat.m[1][2]; m[1][3]+=mat.m[1][3];
m[2][0]+=mat.m[2][0]; m[2][1]+=mat.m[2][1]; m[2][2]+=mat.m[2][2]; m[2][3]+=mat.m[2][3];
m[3][0]+=mat.m[3][0]; m[3][1]+=mat.m[3][1]; m[3][2]+=mat.m[3][2]; m[3][3]+=mat.m[3][3];
return *this;
}
//! Operator for Matrix4x4 -= Matrix4x4;
inline_ Matrix4x4& operator-=(const Matrix4x4& mat)
{
m[0][0]-=mat.m[0][0]; m[0][1]-=mat.m[0][1]; m[0][2]-=mat.m[0][2]; m[0][3]-=mat.m[0][3];
m[1][0]-=mat.m[1][0]; m[1][1]-=mat.m[1][1]; m[1][2]-=mat.m[1][2]; m[1][3]-=mat.m[1][3];
m[2][0]-=mat.m[2][0]; m[2][1]-=mat.m[2][1]; m[2][2]-=mat.m[2][2]; m[2][3]-=mat.m[2][3];
m[3][0]-=mat.m[3][0]; m[3][1]-=mat.m[3][1]; m[3][2]-=mat.m[3][2]; m[3][3]-=mat.m[3][3];
return *this;
}
//! Operator for Matrix4x4 *= Matrix4x4;
Matrix4x4& operator*=(const Matrix4x4& mat)
{
HPoint TempRow;
GetRow(0, TempRow);
m[0][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0];
m[0][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1];
m[0][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2];
m[0][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3];
GetRow(1, TempRow);
m[1][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0];
m[1][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1];
m[1][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2];
m[1][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3];
GetRow(2, TempRow);
m[2][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0];
m[2][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1];
m[2][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2];
m[2][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3];
GetRow(3, TempRow);
m[3][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0];
m[3][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1];
m[3][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2];
m[3][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3];
return *this;
}
//! Operator for Matrix4x4 *= float;
inline_ Matrix4x4& operator*=(float s)
{
m[0][0]*=s; m[0][1]*=s; m[0][2]*=s; m[0][3]*=s;
m[1][0]*=s; m[1][1]*=s; m[1][2]*=s; m[1][3]*=s;
m[2][0]*=s; m[2][1]*=s; m[2][2]*=s; m[2][3]*=s;
m[3][0]*=s; m[3][1]*=s; m[3][2]*=s; m[3][3]*=s;
return *this;
}
//! Operator for Matrix4x4 /= float;
inline_ Matrix4x4& operator/=(float s)
{
if(s) s = 1.0f / s;
m[0][0]*=s; m[0][1]*=s; m[0][2]*=s; m[0][3]*=s;
m[1][0]*=s; m[1][1]*=s; m[1][2]*=s; m[1][3]*=s;
m[2][0]*=s; m[2][1]*=s; m[2][2]*=s; m[2][3]*=s;
m[3][0]*=s; m[3][1]*=s; m[3][2]*=s; m[3][3]*=s;
return *this;
}
inline_ const HPoint& operator[](int row) const { return *(const HPoint*)&m[row][0]; }
inline_ HPoint& operator[](int row) { return *(HPoint*)&m[row][0]; }
public:
float m[4][4];
};
//! Quickly rotates & translates a vector, using the 4x3 part of a 4x4 matrix
inline_ void TransformPoint4x3(Point& dest, const Point& source, const Matrix4x4& rot)
{
dest.x = rot.m[3][0] + source.x * rot.m[0][0] + source.y * rot.m[1][0] + source.z * rot.m[2][0];
dest.y = rot.m[3][1] + source.x * rot.m[0][1] + source.y * rot.m[1][1] + source.z * rot.m[2][1];
dest.z = rot.m[3][2] + source.x * rot.m[0][2] + source.y * rot.m[1][2] + source.z * rot.m[2][2];
}
//! Quickly rotates a vector, using the 3x3 part of a 4x4 matrix
inline_ void TransformPoint3x3(Point& dest, const Point& source, const Matrix4x4& rot)
{
dest.x = source.x * rot.m[0][0] + source.y * rot.m[1][0] + source.z * rot.m[2][0];
dest.y = source.x * rot.m[0][1] + source.y * rot.m[1][1] + source.z * rot.m[2][1];
dest.z = source.x * rot.m[0][2] + source.y * rot.m[1][2] + source.z * rot.m[2][2];
}
ICEMATHS_API void InvertPRMatrix(Matrix4x4& dest, const Matrix4x4& src);
#endif // __ICEMATRIX4X4_H__