69 lines
1.9 KiB
C++
69 lines
1.9 KiB
C++
#include "TestCholeskyDecomposition.h"
|
|
#include "btCholeskyDecomposition.h"
|
|
|
|
void TestCholeskyDecomposition::testZeroMatrix()
|
|
{
|
|
const btMatrix3x3 A(0,0,0,0,0,0,0,0,0);
|
|
const int result = choleskyDecompose(A, L);
|
|
|
|
// The zero matrix is not positive definite so the decomposition does not
|
|
// exist.
|
|
CPPUNIT_ASSERT(result != 0);
|
|
}
|
|
|
|
void TestCholeskyDecomposition::testIdentityMatrix()
|
|
{
|
|
const btMatrix3x3 A = I;
|
|
const int result = choleskyDecompose(A, L);
|
|
|
|
// The identity is a special case where the result should also be the
|
|
// identity.
|
|
CPPUNIT_ASSERT(result == 0);
|
|
CPPUNIT_ASSERT(equal(L, I));
|
|
}
|
|
|
|
void TestCholeskyDecomposition::testPositiveDefiniteMatrix()
|
|
{
|
|
const btMatrix3x3 M(3,0,0,1,2,0,3,2,1);
|
|
const btMatrix3x3 A = M * M.transpose();
|
|
const int result = choleskyDecompose(A, L);
|
|
|
|
// By construction, the resulting decomposition of A should be equal to M
|
|
CPPUNIT_ASSERT(result == 0);
|
|
CPPUNIT_ASSERT(equal(L, M));
|
|
CPPUNIT_ASSERT(equal(A, L * L.transpose()));
|
|
}
|
|
|
|
void TestCholeskyDecomposition::testPositiveSemiDefiniteMatrix()
|
|
{
|
|
const btMatrix3x3 M(3,0,0,1,0,0,3,2,1);
|
|
const btMatrix3x3 A = M * M.transpose();
|
|
const int result = choleskyDecompose(A, L);
|
|
|
|
// The matrix is semi definite, i.e. one of the eigenvalues is zero, so the
|
|
// Cholesky decomposition does not exist.
|
|
CPPUNIT_ASSERT(result != 0);
|
|
}
|
|
|
|
void TestCholeskyDecomposition::testNegativeDefiniteMatrix()
|
|
{
|
|
const btMatrix3x3 M(3,0,0,1,2,0,3,2,1);
|
|
const btMatrix3x3 A = M * M.transpose() * (-1.0);
|
|
const int result = choleskyDecompose(A, L);
|
|
|
|
// The matrix is negative definite, i.e. all of the eigenvalues are negative,
|
|
// so the Cholesky decomposition does not exist.
|
|
CPPUNIT_ASSERT(result != 0);
|
|
}
|
|
|
|
bool TestCholeskyDecomposition::equal(const btMatrix3x3& A, const btMatrix3x3& B) const
|
|
{
|
|
for (unsigned int i = 0; i < 3; ++i)
|
|
for (unsigned int j = 0; j < 3; ++j)
|
|
if (btFabs(A[i][j] - B[i][j]) > SIMD_EPSILON)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|