796 lines
18 KiB
C++
796 lines
18 KiB
C++
#include "float_math.h"
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#include <vector>
|
|
|
|
/*----------------------------------------------------------------------
|
|
Copyright (c) 2004 Open Dynamics Framework Group
|
|
www.physicstools.org
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without modification, are permitted provided
|
|
that the following conditions are met:
|
|
|
|
Redistributions of source code must retain the above copyright notice, this list of conditions
|
|
and the following disclaimer.
|
|
|
|
Redistributions in binary form must reproduce the above copyright notice,
|
|
this list of conditions and the following disclaimer in the documentation
|
|
and/or other materials provided with the distribution.
|
|
|
|
Neither the name of the Open Dynamics Framework Group nor the names of its contributors may
|
|
be used to endorse or promote products derived from this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 'AS IS' AND ANY EXPRESS OR IMPLIED WARRANTIES,
|
|
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
DISCLAIMED. IN NO EVENT SHALL THE INTEL OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
|
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
-----------------------------------------------------------------------*/
|
|
|
|
// http://codesuppository.blogspot.com
|
|
//
|
|
// mailto: jratcliff@infiniplex.net
|
|
//
|
|
// http://www.amillionpixels.us
|
|
//
|
|
|
|
#include "concavity.h"
|
|
#include "raytri.h"
|
|
#include "bestfit.h"
|
|
#include "cd_hull.h"
|
|
#include "meshvolume.h"
|
|
#include "cd_vector.h"
|
|
#include "splitplane.h"
|
|
#include "ConvexDecomposition.h"
|
|
|
|
|
|
#define WSCALE 4
|
|
#define CONCAVE_THRESH 0.05f
|
|
|
|
namespace ConvexDecomposition
|
|
{
|
|
|
|
unsigned int getDebugColor(void)
|
|
{
|
|
static unsigned int colors[8] =
|
|
{
|
|
0xFF0000,
|
|
0x00FF00,
|
|
0x0000FF,
|
|
0xFFFF00,
|
|
0x00FFFF,
|
|
0xFF00FF,
|
|
0xFFFFFF,
|
|
0xFF8040
|
|
};
|
|
|
|
static int count = 0;
|
|
|
|
count++;
|
|
|
|
if ( count == 8 ) count = 0;
|
|
|
|
assert( count >= 0 && count < 8 );
|
|
|
|
unsigned int color = colors[count];
|
|
|
|
return color;
|
|
|
|
}
|
|
|
|
class Wpoint
|
|
{
|
|
public:
|
|
Wpoint(const Vector3d &p,float w)
|
|
{
|
|
mPoint = p;
|
|
mWeight = w;
|
|
}
|
|
|
|
Vector3d mPoint;
|
|
float mWeight;
|
|
};
|
|
|
|
typedef std::vector< Wpoint > WpointVector;
|
|
|
|
|
|
static inline float DistToPt(const float *p,const float *plane)
|
|
{
|
|
float x = p[0];
|
|
float y = p[1];
|
|
float z = p[2];
|
|
float d = x*plane[0] + y*plane[1] + z*plane[2] + plane[3];
|
|
return d;
|
|
}
|
|
|
|
|
|
static void intersect(const float *p1,const float *p2,float *split,const float *plane)
|
|
{
|
|
|
|
float dp1 = DistToPt(p1,plane);
|
|
|
|
float dir[3];
|
|
|
|
dir[0] = p2[0] - p1[0];
|
|
dir[1] = p2[1] - p1[1];
|
|
dir[2] = p2[2] - p1[2];
|
|
|
|
float dot1 = dir[0]*plane[0] + dir[1]*plane[1] + dir[2]*plane[2];
|
|
float dot2 = dp1 - plane[3];
|
|
|
|
float t = -(plane[3] + dot2 ) / dot1;
|
|
|
|
split[0] = (dir[0]*t)+p1[0];
|
|
split[1] = (dir[1]*t)+p1[1];
|
|
split[2] = (dir[2]*t)+p1[2];
|
|
}
|
|
|
|
|
|
class CTri
|
|
{
|
|
public:
|
|
CTri(void) { };
|
|
|
|
CTri(const float *p1,const float *p2,const float *p3,unsigned int i1,unsigned int i2,unsigned int i3)
|
|
{
|
|
mProcessed = 0;
|
|
mI1 = i1;
|
|
mI2 = i2;
|
|
mI3 = i3;
|
|
|
|
mP1.Set(p1);
|
|
mP2.Set(p2);
|
|
mP3.Set(p3);
|
|
|
|
mPlaneD = mNormal.ComputePlane(mP1,mP2,mP3);
|
|
}
|
|
|
|
float Facing(const CTri &t)
|
|
{
|
|
float d = mNormal.Dot(t.mNormal);
|
|
return d;
|
|
}
|
|
|
|
// clip this line segment against this triangle.
|
|
bool clip(const Vector3d &start,Vector3d &end) const
|
|
{
|
|
Vector3d sect;
|
|
|
|
bool hit = lineIntersectsTriangle(start.Ptr(), end.Ptr(), mP1.Ptr(), mP2.Ptr(), mP3.Ptr(), sect.Ptr() );
|
|
|
|
if ( hit )
|
|
{
|
|
end = sect;
|
|
}
|
|
return hit;
|
|
}
|
|
|
|
bool Concave(const Vector3d &p,float &distance,Vector3d &n) const
|
|
{
|
|
n.NearestPointInTriangle(p,mP1,mP2,mP3);
|
|
distance = p.Distance(n);
|
|
return true;
|
|
}
|
|
|
|
void addTri(unsigned int *indices,unsigned int i1,unsigned int i2,unsigned int i3,unsigned int &tcount) const
|
|
{
|
|
indices[tcount*3+0] = i1;
|
|
indices[tcount*3+1] = i2;
|
|
indices[tcount*3+2] = i3;
|
|
tcount++;
|
|
}
|
|
|
|
float getVolume(ConvexDecompInterface *callback) const
|
|
{
|
|
unsigned int indices[8*3];
|
|
|
|
|
|
unsigned int tcount = 0;
|
|
|
|
addTri(indices,0,1,2,tcount);
|
|
addTri(indices,3,4,5,tcount);
|
|
|
|
addTri(indices,0,3,4,tcount);
|
|
addTri(indices,0,4,1,tcount);
|
|
|
|
addTri(indices,1,4,5,tcount);
|
|
addTri(indices,1,5,2,tcount);
|
|
|
|
addTri(indices,0,3,5,tcount);
|
|
addTri(indices,0,5,2,tcount);
|
|
|
|
const float *vertices = mP1.Ptr();
|
|
|
|
if ( callback )
|
|
{
|
|
unsigned int color = getDebugColor();
|
|
|
|
#if 0
|
|
Vector3d d1 = mNear1;
|
|
Vector3d d2 = mNear2;
|
|
Vector3d d3 = mNear3;
|
|
|
|
callback->ConvexDebugPoint(mP1.Ptr(),0.01f,0x00FF00);
|
|
callback->ConvexDebugPoint(mP2.Ptr(),0.01f,0x00FF00);
|
|
callback->ConvexDebugPoint(mP3.Ptr(),0.01f,0x00FF00);
|
|
callback->ConvexDebugPoint(d1.Ptr(),0.01f,0xFF0000);
|
|
callback->ConvexDebugPoint(d2.Ptr(),0.01f,0xFF0000);
|
|
callback->ConvexDebugPoint(d3.Ptr(),0.01f,0xFF0000);
|
|
|
|
callback->ConvexDebugTri(mP1.Ptr(), d1.Ptr(), d1.Ptr(),0x00FF00);
|
|
callback->ConvexDebugTri(mP2.Ptr(), d2.Ptr(), d2.Ptr(),0x00FF00);
|
|
callback->ConvexDebugTri(mP3.Ptr(), d3.Ptr(), d3.Ptr(),0x00FF00);
|
|
|
|
#else
|
|
for (unsigned int i=0; i<tcount; i++)
|
|
{
|
|
unsigned int i1 = indices[i*3+0];
|
|
unsigned int i2 = indices[i*3+1];
|
|
unsigned int i3 = indices[i*3+2];
|
|
|
|
const float *p1 = &vertices[ i1*3 ];
|
|
const float *p2 = &vertices[ i2*3 ];
|
|
const float *p3 = &vertices[ i3*3 ];
|
|
|
|
callback->ConvexDebugTri(p1,p2,p3,color);
|
|
|
|
}
|
|
#endif
|
|
}
|
|
|
|
float v = computeMeshVolume(mP1.Ptr(), tcount, indices );
|
|
|
|
return v;
|
|
|
|
}
|
|
|
|
float raySect(const Vector3d &p,const Vector3d &dir,Vector3d §) const
|
|
{
|
|
float plane[4];
|
|
|
|
plane[0] = mNormal.x;
|
|
plane[1] = mNormal.y;
|
|
plane[2] = mNormal.z;
|
|
plane[3] = mPlaneD;
|
|
|
|
Vector3d dest = p+dir*100000;
|
|
|
|
intersect( p.Ptr(), dest.Ptr(), sect.Ptr(), plane );
|
|
|
|
return sect.Distance(p); // return the intersection distance.
|
|
|
|
}
|
|
|
|
float planeDistance(const Vector3d &p) const
|
|
{
|
|
float plane[4];
|
|
|
|
plane[0] = mNormal.x;
|
|
plane[1] = mNormal.y;
|
|
plane[2] = mNormal.z;
|
|
plane[3] = mPlaneD;
|
|
|
|
return DistToPt( p.Ptr(), plane );
|
|
|
|
}
|
|
|
|
bool samePlane(const CTri &t) const
|
|
{
|
|
const float THRESH = 0.001f;
|
|
float dd = fabsf( t.mPlaneD - mPlaneD );
|
|
if ( dd > THRESH ) return false;
|
|
dd = fabsf( t.mNormal.x - mNormal.x );
|
|
if ( dd > THRESH ) return false;
|
|
dd = fabsf( t.mNormal.y - mNormal.y );
|
|
if ( dd > THRESH ) return false;
|
|
dd = fabsf( t.mNormal.z - mNormal.z );
|
|
if ( dd > THRESH ) return false;
|
|
return true;
|
|
}
|
|
|
|
bool hasIndex(unsigned int i) const
|
|
{
|
|
if ( i == mI1 || i == mI2 || i == mI3 ) return true;
|
|
return false;
|
|
}
|
|
|
|
bool sharesEdge(const CTri &t) const
|
|
{
|
|
bool ret = false;
|
|
unsigned int count = 0;
|
|
|
|
if ( t.hasIndex(mI1) ) count++;
|
|
if ( t.hasIndex(mI2) ) count++;
|
|
if ( t.hasIndex(mI3) ) count++;
|
|
|
|
if ( count >= 2 ) ret = true;
|
|
|
|
return ret;
|
|
}
|
|
|
|
void debug(unsigned int color,ConvexDecompInterface *callback)
|
|
{
|
|
callback->ConvexDebugTri( mP1.Ptr(), mP2.Ptr(), mP3.Ptr(), color );
|
|
callback->ConvexDebugTri( mP1.Ptr(), mP1.Ptr(), mNear1.Ptr(), 0xFF0000 );
|
|
callback->ConvexDebugTri( mP2.Ptr(), mP2.Ptr(), mNear2.Ptr(), 0xFF0000 );
|
|
callback->ConvexDebugTri( mP2.Ptr(), mP3.Ptr(), mNear3.Ptr(), 0xFF0000 );
|
|
callback->ConvexDebugPoint( mNear1.Ptr(), 0.01f, 0xFF0000 );
|
|
callback->ConvexDebugPoint( mNear2.Ptr(), 0.01f, 0xFF0000 );
|
|
callback->ConvexDebugPoint( mNear3.Ptr(), 0.01f, 0xFF0000 );
|
|
}
|
|
|
|
float area(void)
|
|
{
|
|
float a = mConcavity*mP1.Area(mP2,mP3);
|
|
return a;
|
|
}
|
|
|
|
void addWeighted(WpointVector &list,ConvexDecompInterface *callback)
|
|
{
|
|
|
|
Wpoint p1(mP1,mC1);
|
|
Wpoint p2(mP2,mC2);
|
|
Wpoint p3(mP3,mC3);
|
|
|
|
Vector3d d1 = mNear1 - mP1;
|
|
Vector3d d2 = mNear2 - mP2;
|
|
Vector3d d3 = mNear3 - mP3;
|
|
|
|
d1*=WSCALE;
|
|
d2*=WSCALE;
|
|
d3*=WSCALE;
|
|
|
|
d1 = d1 + mP1;
|
|
d2 = d2 + mP2;
|
|
d3 = d3 + mP3;
|
|
|
|
Wpoint p4(d1,mC1);
|
|
Wpoint p5(d2,mC2);
|
|
Wpoint p6(d3,mC3);
|
|
|
|
list.push_back(p1);
|
|
list.push_back(p2);
|
|
list.push_back(p3);
|
|
|
|
list.push_back(p4);
|
|
list.push_back(p5);
|
|
list.push_back(p6);
|
|
|
|
#if 0
|
|
callback->ConvexDebugPoint(mP1.Ptr(),0.01f,0x00FF00);
|
|
callback->ConvexDebugPoint(mP2.Ptr(),0.01f,0x00FF00);
|
|
callback->ConvexDebugPoint(mP3.Ptr(),0.01f,0x00FF00);
|
|
callback->ConvexDebugPoint(d1.Ptr(),0.01f,0xFF0000);
|
|
callback->ConvexDebugPoint(d2.Ptr(),0.01f,0xFF0000);
|
|
callback->ConvexDebugPoint(d3.Ptr(),0.01f,0xFF0000);
|
|
|
|
callback->ConvexDebugTri(mP1.Ptr(), d1.Ptr(), d1.Ptr(),0x00FF00);
|
|
callback->ConvexDebugTri(mP2.Ptr(), d2.Ptr(), d2.Ptr(),0x00FF00);
|
|
callback->ConvexDebugTri(mP3.Ptr(), d3.Ptr(), d3.Ptr(),0x00FF00);
|
|
|
|
Vector3d np1 = mP1 + mNormal*0.05f;
|
|
Vector3d np2 = mP2 + mNormal*0.05f;
|
|
Vector3d np3 = mP3 + mNormal*0.05f;
|
|
|
|
callback->ConvexDebugTri(mP1.Ptr(), np1.Ptr(), np1.Ptr(), 0xFF00FF );
|
|
callback->ConvexDebugTri(mP2.Ptr(), np2.Ptr(), np2.Ptr(), 0xFF00FF );
|
|
callback->ConvexDebugTri(mP3.Ptr(), np3.Ptr(), np3.Ptr(), 0xFF00FF );
|
|
|
|
callback->ConvexDebugPoint( np1.Ptr(), 0.01F, 0XFF00FF );
|
|
callback->ConvexDebugPoint( np2.Ptr(), 0.01F, 0XFF00FF );
|
|
callback->ConvexDebugPoint( np3.Ptr(), 0.01F, 0XFF00FF );
|
|
|
|
#endif
|
|
|
|
|
|
|
|
}
|
|
|
|
Vector3d mP1;
|
|
Vector3d mP2;
|
|
Vector3d mP3;
|
|
Vector3d mNear1;
|
|
Vector3d mNear2;
|
|
Vector3d mNear3;
|
|
Vector3d mNormal;
|
|
float mPlaneD;
|
|
float mConcavity;
|
|
float mC1;
|
|
float mC2;
|
|
float mC3;
|
|
unsigned int mI1;
|
|
unsigned int mI2;
|
|
unsigned int mI3;
|
|
int mProcessed; // already been added...
|
|
};
|
|
|
|
typedef std::vector< CTri > CTriVector;
|
|
|
|
bool featureMatch(CTri &m,const CTriVector &tris,ConvexDecompInterface *callback,const CTriVector &input_mesh)
|
|
{
|
|
|
|
bool ret = false;
|
|
|
|
float neardot = 0.707f;
|
|
|
|
m.mConcavity = 0;
|
|
|
|
//gLog->Display("*********** FEATURE MATCH *************\r\n");
|
|
//gLog->Display("Plane: %0.4f,%0.4f,%0.4f %0.4f\r\n", m.mNormal.x, m.mNormal.y, m.mNormal.z, m.mPlaneD );
|
|
//gLog->Display("*********************************************\r\n");
|
|
|
|
CTriVector::const_iterator i;
|
|
|
|
CTri nearest;
|
|
|
|
|
|
for (i=tris.begin(); i!=tris.end(); ++i)
|
|
{
|
|
const CTri &t = (*i);
|
|
|
|
|
|
//gLog->Display(" HullPlane: %0.4f,%0.4f,%0.4f %0.4f\r\n", t.mNormal.x, t.mNormal.y, t.mNormal.z, t.mPlaneD );
|
|
|
|
if ( t.samePlane(m) )
|
|
{
|
|
//gLog->Display("*** PLANE MATCH!!!\r\n");
|
|
ret = false;
|
|
break;
|
|
}
|
|
|
|
float dot = t.mNormal.Dot(m.mNormal);
|
|
|
|
if ( dot > neardot )
|
|
{
|
|
|
|
float d1 = t.planeDistance( m.mP1 );
|
|
float d2 = t.planeDistance( m.mP2 );
|
|
float d3 = t.planeDistance( m.mP3 );
|
|
|
|
if ( d1 > 0.001f || d2 > 0.001f || d3 > 0.001f ) // can't be near coplaner!
|
|
{
|
|
|
|
neardot = dot;
|
|
|
|
Vector3d n1,n2,n3;
|
|
|
|
t.raySect( m.mP1, m.mNormal, m.mNear1 );
|
|
t.raySect( m.mP2, m.mNormal, m.mNear2 );
|
|
t.raySect( m.mP3, m.mNormal, m.mNear3 );
|
|
|
|
nearest = t;
|
|
|
|
ret = true;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
if ( ret )
|
|
{
|
|
if ( 0 )
|
|
{
|
|
CTriVector::const_iterator i;
|
|
for (i=input_mesh.begin(); i!=input_mesh.end(); ++i)
|
|
{
|
|
const CTri &c = (*i);
|
|
if ( c.mI1 != m.mI1 && c.mI2 != m.mI2 && c.mI3 != m.mI3 )
|
|
{
|
|
c.clip( m.mP1, m.mNear1 );
|
|
c.clip( m.mP2, m.mNear2 );
|
|
c.clip( m.mP3, m.mNear3 );
|
|
}
|
|
}
|
|
}
|
|
|
|
//gLog->Display("*********************************************\r\n");
|
|
//gLog->Display(" HullPlaneNearest: %0.4f,%0.4f,%0.4f %0.4f\r\n", nearest.mNormal.x, nearest.mNormal.y, nearest.mNormal.z, nearest.mPlaneD );
|
|
|
|
m.mC1 = m.mP1.Distance( m.mNear1 );
|
|
m.mC2 = m.mP2.Distance( m.mNear2 );
|
|
m.mC3 = m.mP3.Distance( m.mNear3 );
|
|
|
|
m.mConcavity = m.mC1;
|
|
|
|
if ( m.mC2 > m.mConcavity ) m.mConcavity = m.mC2;
|
|
if ( m.mC3 > m.mConcavity ) m.mConcavity = m.mC3;
|
|
|
|
#if 0
|
|
callback->ConvexDebugTri( m.mP1.Ptr(), m.mP2.Ptr(), m.mP3.Ptr(), 0x00FF00 );
|
|
callback->ConvexDebugTri( m.mNear1.Ptr(), m.mNear2.Ptr(), m.mNear3.Ptr(), 0xFF0000 );
|
|
|
|
callback->ConvexDebugTri( m.mP1.Ptr(), m.mP1.Ptr(), m.mNear1.Ptr(), 0xFFFF00 );
|
|
callback->ConvexDebugTri( m.mP2.Ptr(), m.mP2.Ptr(), m.mNear2.Ptr(), 0xFFFF00 );
|
|
callback->ConvexDebugTri( m.mP3.Ptr(), m.mP3.Ptr(), m.mNear3.Ptr(), 0xFFFF00 );
|
|
#endif
|
|
|
|
}
|
|
else
|
|
{
|
|
//gLog->Display("No match\r\n");
|
|
}
|
|
|
|
//gLog->Display("*********************************************\r\n");
|
|
return ret;
|
|
}
|
|
|
|
bool isFeatureTri(CTri &t,CTriVector &flist,float fc,ConvexDecompInterface *callback,unsigned int color)
|
|
{
|
|
bool ret = false;
|
|
|
|
if ( t.mProcessed == 0 ) // if not already processed
|
|
{
|
|
|
|
float c = t.mConcavity / fc; // must be within 80% of the concavity of the parent.
|
|
|
|
if ( c > 0.85f )
|
|
{
|
|
// see if this triangle is a 'feature' triangle. Meaning it shares an
|
|
// edge with any existing feature triangle and is within roughly the same
|
|
// concavity of the parent.
|
|
if ( flist.size() )
|
|
{
|
|
CTriVector::iterator i;
|
|
for (i=flist.begin(); i!=flist.end(); ++i)
|
|
{
|
|
CTri &ftri = (*i);
|
|
if ( ftri.sharesEdge(t) )
|
|
{
|
|
t.mProcessed = 2; // it is now part of a feature.
|
|
flist.push_back(t); // add it to the feature list.
|
|
// callback->ConvexDebugTri( t.mP1.Ptr(), t.mP2.Ptr(),t.mP3.Ptr(), color );
|
|
ret = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
t.mProcessed = 2;
|
|
flist.push_back(t); // add it to the feature list.
|
|
// callback->ConvexDebugTri( t.mP1.Ptr(), t.mP2.Ptr(),t.mP3.Ptr(), color );
|
|
ret = true;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
t.mProcessed = 1; // eliminated for this feature, but might be valid for the next one..
|
|
}
|
|
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
float computeConcavity(unsigned int vcount,
|
|
const float *vertices,
|
|
unsigned int tcount,
|
|
const unsigned int *indices,
|
|
ConvexDecompInterface *callback,
|
|
float *plane, // plane equation to split on
|
|
float &volume)
|
|
{
|
|
|
|
|
|
float cret = 0;
|
|
volume = 1;
|
|
|
|
HullResult result;
|
|
HullLibrary hl;
|
|
HullDesc desc;
|
|
|
|
desc.mMaxFaces = 256;
|
|
desc.mMaxVertices = 256;
|
|
desc.SetHullFlag(QF_TRIANGLES);
|
|
|
|
|
|
desc.mVcount = vcount;
|
|
desc.mVertices = vertices;
|
|
desc.mVertexStride = sizeof(float)*3;
|
|
|
|
HullError ret = hl.CreateConvexHull(desc,result);
|
|
|
|
if ( ret == QE_OK )
|
|
{
|
|
#if 0
|
|
float bmin[3];
|
|
float bmax[3];
|
|
|
|
float dx = bmax[0] - bmin[0];
|
|
float dy = bmax[1] - bmin[1];
|
|
float dz = bmax[2] - bmin[2];
|
|
|
|
Vector3d center;
|
|
|
|
center.x = bmin[0] + dx*0.5f;
|
|
center.y = bmin[1] + dy*0.5f;
|
|
center.z = bmin[2] + dz*0.5f;
|
|
#endif
|
|
|
|
volume = computeMeshVolume2( result.mOutputVertices, result.mNumFaces, result.mIndices );
|
|
|
|
#if 1
|
|
// ok..now..for each triangle on the original mesh..
|
|
// we extrude the points to the nearest point on the hull.
|
|
const unsigned int *source = result.mIndices;
|
|
|
|
CTriVector tris;
|
|
|
|
for (unsigned int i=0; i<result.mNumFaces; i++)
|
|
{
|
|
unsigned int i1 = *source++;
|
|
unsigned int i2 = *source++;
|
|
unsigned int i3 = *source++;
|
|
|
|
const float *p1 = &result.mOutputVertices[i1*3];
|
|
const float *p2 = &result.mOutputVertices[i2*3];
|
|
const float *p3 = &result.mOutputVertices[i3*3];
|
|
|
|
// callback->ConvexDebugTri(p1,p2,p3,0xFFFFFF);
|
|
|
|
CTri t(p1,p2,p3,i1,i2,i3); //
|
|
tris.push_back(t);
|
|
}
|
|
|
|
// we have not pre-computed the plane equation for each triangle in the convex hull..
|
|
|
|
float totalVolume = 0;
|
|
|
|
CTriVector ftris; // 'feature' triangles.
|
|
|
|
const unsigned int *src = indices;
|
|
|
|
|
|
float maxc=0;
|
|
|
|
|
|
if ( 1 )
|
|
{
|
|
CTriVector input_mesh;
|
|
if ( 1 )
|
|
{
|
|
const unsigned int *src = indices;
|
|
for (unsigned int i=0; i<tcount; i++)
|
|
{
|
|
|
|
unsigned int i1 = *src++;
|
|
unsigned int i2 = *src++;
|
|
unsigned int i3 = *src++;
|
|
|
|
const float *p1 = &vertices[i1*3];
|
|
const float *p2 = &vertices[i2*3];
|
|
const float *p3 = &vertices[i3*3];
|
|
|
|
CTri t(p1,p2,p3,i1,i2,i3);
|
|
input_mesh.push_back(t);
|
|
}
|
|
}
|
|
|
|
CTri maxctri;
|
|
|
|
for (unsigned int i=0; i<tcount; i++)
|
|
{
|
|
|
|
unsigned int i1 = *src++;
|
|
unsigned int i2 = *src++;
|
|
unsigned int i3 = *src++;
|
|
|
|
const float *p1 = &vertices[i1*3];
|
|
const float *p2 = &vertices[i2*3];
|
|
const float *p3 = &vertices[i3*3];
|
|
|
|
CTri t(p1,p2,p3,i1,i2,i3);
|
|
|
|
featureMatch(t, tris, callback, input_mesh );
|
|
|
|
if ( t.mConcavity > CONCAVE_THRESH )
|
|
{
|
|
|
|
if ( t.mConcavity > maxc )
|
|
{
|
|
maxc = t.mConcavity;
|
|
maxctri = t;
|
|
}
|
|
|
|
float v = t.getVolume(0);
|
|
totalVolume+=v;
|
|
ftris.push_back(t);
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
if ( ftris.size() && 0 )
|
|
{
|
|
|
|
// ok..now we extract the triangles which form the maximum concavity.
|
|
CTriVector major_feature;
|
|
float maxarea = 0;
|
|
|
|
while ( maxc > CONCAVE_THRESH )
|
|
{
|
|
|
|
unsigned int color = getDebugColor(); //
|
|
|
|
CTriVector flist;
|
|
|
|
bool found;
|
|
|
|
float totalarea = 0;
|
|
|
|
do
|
|
{
|
|
found = false;
|
|
CTriVector::iterator i;
|
|
for (i=ftris.begin(); i!=ftris.end(); ++i)
|
|
{
|
|
CTri &t = (*i);
|
|
if ( isFeatureTri(t,flist,maxc,callback,color) )
|
|
{
|
|
found = true;
|
|
totalarea+=t.area();
|
|
}
|
|
}
|
|
} while ( found );
|
|
|
|
|
|
if ( totalarea > maxarea )
|
|
{
|
|
major_feature = flist;
|
|
maxarea = totalarea;
|
|
}
|
|
|
|
maxc = 0;
|
|
|
|
for (unsigned int i=0; i<ftris.size(); i++)
|
|
{
|
|
CTri &t = ftris[i];
|
|
if ( t.mProcessed != 2 )
|
|
{
|
|
t.mProcessed = 0;
|
|
if ( t.mConcavity > maxc )
|
|
{
|
|
maxc = t.mConcavity;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned int color = getDebugColor();
|
|
|
|
WpointVector list;
|
|
for (unsigned int i=0; i<major_feature.size(); ++i)
|
|
{
|
|
major_feature[i].addWeighted(list,callback);
|
|
major_feature[i].debug(color,callback);
|
|
}
|
|
|
|
getBestFitPlane( list.size(), &list[0].mPoint.x, sizeof(Wpoint), &list[0].mWeight, sizeof(Wpoint), plane );
|
|
|
|
computeSplitPlane( vcount, vertices, tcount, indices, callback, plane );
|
|
|
|
|
|
}
|
|
else
|
|
{
|
|
computeSplitPlane( vcount, vertices, tcount, indices, callback, plane );
|
|
}
|
|
#endif
|
|
|
|
cret = totalVolume;
|
|
|
|
hl.ReleaseResult(result);
|
|
}
|
|
|
|
|
|
return cret;
|
|
}
|
|
|
|
|
|
}
|