Saxum/extern/acgl/include/glm/gtc/random.inl
2014-10-20 17:31:26 +02:00

172 lines
4.6 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_random
/// @file glm/gtc/random.inl
/// @date 2011-09-19 / 2012-04-07
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////
#include "../geometric.hpp"
#include "../exponential.hpp"
#include <cstdlib>
#include <ctime>
#include <cassert>
namespace glm{
namespace detail
{
struct compute_linearRand
{
template <typename T>
GLM_FUNC_QUALIFIER T operator() (T const & Min, T const & Max) const;
/*
{
GLM_STATIC_ASSERT(0, "'linearRand' invalid template parameter type. GLM_GTC_random only supports floating-point template types.");
return Min;
}
*/
};
template <>
GLM_FUNC_QUALIFIER float compute_linearRand::operator()<float> (float const & Min, float const & Max) const
{
return float(std::rand()) / float(RAND_MAX) * (Max - Min) + Min;
}
template <>
GLM_FUNC_QUALIFIER double compute_linearRand::operator()<double> (double const & Min, double const & Max) const
{
return double(std::rand()) / double(RAND_MAX) * (Max - Min) + Min;
}
template <>
GLM_FUNC_QUALIFIER long double compute_linearRand::operator()<long double> (long double const & Min, long double const & Max) const
{
return (long double)(std::rand()) / (long double)(RAND_MAX) * (Max - Min) + Min;
}
}//namespace detail
template <typename genType>
GLM_FUNC_QUALIFIER genType linearRand
(
genType const & Min,
genType const & Max
)
{
return detail::compute_linearRand()(Min, Max);
}
VECTORIZE_VEC_VEC(linearRand)
template <typename genType>
GLM_FUNC_QUALIFIER genType gaussRand
(
genType const & Mean,
genType const & Deviation
)
{
genType w, x1, x2;
do
{
x1 = linearRand(genType(-1), genType(1));
x2 = linearRand(genType(-1), genType(1));
w = x1 * x1 + x2 * x2;
} while(w > genType(1));
return x2 * Deviation * Deviation * sqrt((genType(-2) * log(w)) / w) + Mean;
}
VECTORIZE_VEC_VEC(gaussRand)
template <typename T>
GLM_FUNC_QUALIFIER detail::tvec2<T, defaultp> diskRand
(
T const & Radius
)
{
detail::tvec2<T, defaultp> Result(T(0));
T LenRadius(T(0));
do
{
Result = linearRand(
detail::tvec2<T, defaultp>(-Radius),
detail::tvec2<T, defaultp>(Radius));
LenRadius = length(Result);
}
while(LenRadius > Radius);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tvec3<T, defaultp> ballRand
(
T const & Radius
)
{
detail::tvec3<T, defaultp> Result(T(0));
T LenRadius(T(0));
do
{
Result = linearRand(
detail::tvec3<T, defaultp>(-Radius),
detail::tvec3<T, defaultp>(Radius));
LenRadius = length(Result);
}
while(LenRadius > Radius);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tvec2<T, defaultp> circularRand
(
T const & Radius
)
{
T a = linearRand(T(0), T(6.283185307179586476925286766559f));
return detail::tvec2<T, defaultp>(cos(a), sin(a)) * Radius;
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tvec3<T, defaultp> sphericalRand
(
T const & Radius
)
{
T z = linearRand(T(-1), T(1));
T a = linearRand(T(0), T(6.283185307179586476925286766559f));
T r = sqrt(T(1) - z * z);
T x = r * cos(a);
T y = r * sin(a);
return detail::tvec3<T, defaultp>(x, y, z) * Radius;
}
}//namespace glm