Saxum/extern/bullet-2.82-r2704/Test/Source/Tests/Test_3x3getRot.cpp
2014-10-24 11:42:47 +02:00

159 lines
4.1 KiB
C++

//
// Test_3x3getRot.cpp
// BulletTest
//
// Copyright (c) 2011 Apple Inc.
//
#include "LinearMath/btScalar.h"
#if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
#include "Test_3x3getRot.h"
#include "vector.h"
#include "Utils.h"
#include "main.h"
#include <math.h>
#include <string.h>
#include <LinearMath/btMatrix3x3.h>
#define LOOPCOUNT 1000
#define ARRAY_SIZE 128
static inline btSimdFloat4 rand_f4(void)
{
return btAssign128( RANDF_m1p1, RANDF_m1p1, RANDF_m1p1, BT_NAN ); // w channel NaN
}
static inline btSimdFloat4 qtNAN_f4(void)
{
return btAssign128( BT_NAN, BT_NAN, BT_NAN, BT_NAN );
}
static void M3x3getRot_ref( const btMatrix3x3 &m, btQuaternion &q )
{
btVector3 m_el[3] = { m[0], m[1], m[2] };
btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z();
btScalar temp[4];
if (trace > btScalar(0.0))
{
btScalar s = btSqrt(trace + btScalar(1.0));
temp[3]=(s * btScalar(0.5));
s = btScalar(0.5) / s;
temp[0]=((m_el[2].y() - m_el[1].z()) * s);
temp[1]=((m_el[0].z() - m_el[2].x()) * s);
temp[2]=((m_el[1].x() - m_el[0].y()) * s);
}
else
{
int i = m_el[0].x() < m_el[1].y() ?
(m_el[1].y() < m_el[2].z() ? 2 : 1) :
(m_el[0].x() < m_el[2].z() ? 2 : 0);
int j = (i + 1) % 3;
int k = (i + 2) % 3;
btScalar s = btSqrt(m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0));
temp[i] = s * btScalar(0.5);
s = btScalar(0.5) / s;
temp[3] = (m_el[k][j] - m_el[j][k]) * s;
temp[j] = (m_el[j][i] + m_el[i][j]) * s;
temp[k] = (m_el[k][i] + m_el[i][k]) * s;
}
q.setValue(temp[0],temp[1],temp[2],temp[3]);
}
static int operator!= ( const btQuaternion &a, const btQuaternion &b )
{
if( fabs(a.x() - b.x()) +
fabs(a.y() - b.y()) +
fabs(a.z() - b.z()) +
fabs(a.w() - b.w()) > FLT_EPSILON * 4)
return 1;
return 0;
}
int Test_3x3getRot(void)
{
// Init an array flanked by guard pages
btMatrix3x3 in1[ARRAY_SIZE];
btQuaternion out[ARRAY_SIZE];
btQuaternion out2[ARRAY_SIZE];
// Init the data
size_t i, j;
for( i = 0; i < ARRAY_SIZE; i++ )
{
in1[i] = btMatrix3x3(rand_f4(), rand_f4(), rand_f4() );
out[i] = btQuaternion(qtNAN_f4());
out2[i] = btQuaternion(qtNAN_f4());
M3x3getRot_ref(in1[i], out[i]);
in1[i].getRotation(out2[i]);
if( out[i] != out2[i] )
{
vlog( "Error - M3x3getRot result error! ");
vlog( "failure @ %ld\n", i);
vlog( "\ncorrect = (%10.7f, %10.7f, %10.7f, %10.7f) "
"\ntested = (%10.7f, %10.7f, %10.7f, %10.7f) \n",
out[i].x(), out[i].y(), out[i].z(), out[i].w(),
out2[i].x(), out2[i].y(), out2[i].z(), out2[i].w());
return -1;
}
}
uint64_t scalarTime, vectorTime;
uint64_t startTime, bestTime, currentTime;
bestTime = ~(bestTime&0);//-1ULL;
scalarTime = 0;
for (j = 0; j < LOOPCOUNT; j++)
{
startTime = ReadTicks();
for( i = 0; i < ARRAY_SIZE; i++ )
M3x3getRot_ref(in1[i], out[i]);
currentTime = ReadTicks() - startTime;
scalarTime += currentTime;
if( currentTime < bestTime )
bestTime = currentTime;
}
if( 0 == gReportAverageTimes )
scalarTime = bestTime;
else
scalarTime /= LOOPCOUNT;
bestTime = ~(bestTime&0);//-1ULL;
vectorTime = 0;
for (j = 0; j < LOOPCOUNT; j++)
{
startTime = ReadTicks();
for( i = 0; i < ARRAY_SIZE; i++ )
{
in1[i].getRotation(out2[i]);
}
currentTime = ReadTicks() - startTime;
vectorTime += currentTime;
if( currentTime < bestTime )
bestTime = currentTime;
}
if( 0 == gReportAverageTimes )
vectorTime = bestTime;
else
vectorTime /= LOOPCOUNT;
vlog( "Timing:\n" );
vlog( "\t scalar\t vector\n" );
vlog( "\t%10.2f\t%10.2f\n", TicksToCycles( scalarTime ) / ARRAY_SIZE, TicksToCycles( vectorTime ) / ARRAY_SIZE );
return 0;
}
#endif//BT_USE_SSE