163 lines
3.8 KiB
C++
163 lines
3.8 KiB
C++
//
|
|
// Test_qtdot.cpp
|
|
// BulletTest
|
|
//
|
|
// Copyright (c) 2011 Apple Inc.
|
|
//
|
|
|
|
|
|
|
|
#include "LinearMath/btScalar.h"
|
|
#if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
|
|
|
|
#include "Test_qtdot.h"
|
|
#include "vector.h"
|
|
#include "Utils.h"
|
|
#include "main.h"
|
|
#include <math.h>
|
|
#include <string.h>
|
|
|
|
#include <LinearMath/btQuaternion.h>
|
|
|
|
#define BT_OP(a, b) (a.dot(b))
|
|
// reference code for testing purposes
|
|
static inline btScalar qtdot_ref(btQuaternion& q1, btQuaternion& q2);
|
|
|
|
static inline btScalar qtdot_ref(btQuaternion& q1, btQuaternion& q2)
|
|
{
|
|
return
|
|
q1.x() * q2.x() +
|
|
q1.y() * q2.y() +
|
|
q1.z() * q2.z() +
|
|
q1.w() * q2.w();
|
|
}
|
|
|
|
#define LOOPCOUNT 1024
|
|
#define NUM_CYCLES 1000
|
|
|
|
int Test_qtdot(void)
|
|
{
|
|
btQuaternion q1, q2;
|
|
float x, y, z, w, vNaN;
|
|
vNaN = BT_NAN; // w channel NaN
|
|
|
|
// Init the data
|
|
x = RANDF_01;
|
|
y = RANDF_01;
|
|
z = RANDF_01;
|
|
w = RANDF_01;
|
|
q1.setValue(x,y,z,w);
|
|
|
|
x = RANDF_01;
|
|
y = RANDF_01;
|
|
z = RANDF_01;
|
|
w = RANDF_01;
|
|
q2.setValue(x,y,z,w);
|
|
|
|
btScalar correct_res, test_res;
|
|
|
|
{
|
|
correct_res = vNaN;
|
|
test_res = vNaN;
|
|
correct_res = qtdot_ref(q1, q2);
|
|
test_res = BT_OP(q1,q2);
|
|
|
|
if( fabsf(correct_res - test_res) > FLT_EPSILON*4 )
|
|
{
|
|
vlog( "Error - qtdot result error! "
|
|
"\ncorrect = %10.4f "
|
|
"\ntested = %10.4f \n",
|
|
correct_res, test_res);
|
|
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
#define DATA_SIZE LOOPCOUNT
|
|
|
|
btQuaternion qt_arr1[DATA_SIZE];
|
|
btQuaternion qt_arr2[DATA_SIZE];
|
|
btScalar res_arr[DATA_SIZE];
|
|
|
|
uint64_t scalarTime;
|
|
uint64_t vectorTime;
|
|
size_t j, k;
|
|
|
|
for( k = 0; k < DATA_SIZE; k++ )
|
|
{
|
|
x = RANDF_01;
|
|
y = RANDF_01;
|
|
z = RANDF_01;
|
|
w = RANDF_01;
|
|
qt_arr1[k].setValue(x,y,z,w);
|
|
|
|
x = RANDF_01;
|
|
y = RANDF_01;
|
|
z = RANDF_01;
|
|
w = RANDF_01;
|
|
qt_arr2[k].setValue(x,y,z,w);
|
|
}
|
|
|
|
{
|
|
uint64_t startTime, bestTime, currentTime;
|
|
|
|
bestTime = -1LL;
|
|
scalarTime = 0;
|
|
for (j = 0; j < NUM_CYCLES; j++)
|
|
{
|
|
startTime = ReadTicks();
|
|
for( k = 0; k+4 <= LOOPCOUNT; k+=4 )
|
|
{
|
|
size_t km = (k & (DATA_SIZE-1));
|
|
res_arr[km] = qtdot_ref(qt_arr1[km], qt_arr2[km]);km++;
|
|
res_arr[km] = qtdot_ref(qt_arr1[km], qt_arr2[km]);km++;
|
|
res_arr[km] = qtdot_ref(qt_arr1[km], qt_arr2[km]);km++;
|
|
res_arr[km] = qtdot_ref(qt_arr1[km], qt_arr2[km]);
|
|
}
|
|
currentTime = ReadTicks() - startTime;
|
|
scalarTime += currentTime;
|
|
if( currentTime < bestTime )
|
|
bestTime = currentTime;
|
|
}
|
|
if( 0 == gReportAverageTimes )
|
|
scalarTime = bestTime;
|
|
else
|
|
scalarTime /= NUM_CYCLES;
|
|
}
|
|
|
|
{
|
|
uint64_t startTime, bestTime, currentTime;
|
|
|
|
bestTime = -1LL;
|
|
vectorTime = 0;
|
|
for (j = 0; j < NUM_CYCLES; j++)
|
|
{
|
|
startTime = ReadTicks();
|
|
for( k = 0; k+4 <= LOOPCOUNT; k+=4 )
|
|
{
|
|
size_t km = (k & (DATA_SIZE-1));
|
|
res_arr[km] = BT_OP(qt_arr1[km], qt_arr2[km]);km++;
|
|
res_arr[km] = BT_OP(qt_arr1[km], qt_arr2[km]);km++;
|
|
res_arr[km] = BT_OP(qt_arr1[km], qt_arr2[km]);km++;
|
|
res_arr[km] = BT_OP(qt_arr1[km], qt_arr2[km]);km++;
|
|
}
|
|
currentTime = ReadTicks() - startTime;
|
|
vectorTime += currentTime;
|
|
if( currentTime < bestTime )
|
|
bestTime = currentTime;
|
|
}
|
|
if( 0 == gReportAverageTimes )
|
|
vectorTime = bestTime;
|
|
else
|
|
vectorTime /= NUM_CYCLES;
|
|
}
|
|
|
|
vlog( "Timing:\n" );
|
|
vlog( " \t scalar\t vector\n" );
|
|
vlog( " \t%10.4f\t%10.4f\n", TicksToCycles( scalarTime ) / LOOPCOUNT,
|
|
TicksToCycles( vectorTime ) / LOOPCOUNT );
|
|
|
|
return 0;
|
|
}
|
|
#endif //BT_USE_SSE
|