Saxum/graphics.cc

426 lines
18 KiB
C++

#include "graphics.hh"
#include "lodepng.h"
#include <iomanip>
#include <sstream>
#include <functional>
#include <ACGL/OpenGL/Creator/ShaderProgramCreator.hh>
using namespace ACGL::OpenGL;
const double lightUpdateDelay = 0.5f;
Graphics::Graphics(glm::uvec2 windowSize, float nearPlane,
float farPlane, int cube_size,
unsigned int maxShadowRenderCount) {
this->windowSize = windowSize;
this->nearPlane = nearPlane;
this->farPlane = farPlane;
this->cube_size = cube_size;
this->maxShadowRenderCount = maxShadowRenderCount;
}
Graphics::Graphics() {
}
void Graphics::init(Level* level) {
// save Level
this->level = level;
// OpenGL state:
glClearColor( 0.0, 0.0, 0.0, 1.0 );
glEnable( GL_DEPTH_TEST );
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS);
glEnable(GL_MULTISAMPLE);
fullscreen_quad_ab = SharedArrayBuffer(new ArrayBuffer());
fullscreen_quad_ab->defineAttribute("aPosition", GL_FLOAT, 2);
fullscreen_quad_ab->defineAttribute("aTexCoord", GL_FLOAT, 2);
float quadData[] = {
-1.0f, 1.0f, 0.0f, 1.0f,
1.0f, 1.0f, 1.0f, 1.0f,
1.0f, -1.0f, 1.0f, 0.0f,
1.0f, -1.0f, 1.0f, 0.0f,
-1.0f, -1.0f, 0.0f, 0.0f,
-1.0f, 1.0f, 0.0f, 1.0f
};
fullscreen_quad_ab->setDataElements(6, quadData);
fullscreen_quad = SharedVertexArrayObject(new VertexArrayObject);
fullscreen_quad->attachAllAttributes(fullscreen_quad_ab);
// update lights on creation
lastUpdate = -lightUpdateDelay;
// construct VAO to give shader correct Attribute locations
SharedArrayBuffer ab = SharedArrayBuffer(new ArrayBuffer());
ab->defineAttribute("aPosition", GL_FLOAT, 3);
ab->defineAttribute("aTexCoord", GL_FLOAT, 2);
ab->defineAttribute("aNormal", GL_FLOAT, 3);
SharedVertexArrayObject vao = SharedVertexArrayObject(new VertexArrayObject());
vao->attachAllAttributes(ab);
// look up all shader files starting with 'phong' and build a ShaderProgram from it:
lightingShader = ShaderProgramCreator("phong").attributeLocations(
vao->getAttributeLocations()).create();
depthShader = ShaderProgramCreator("depth")
.attributeLocations(vao->getAttributeLocations()).create();
depthCubeShader = ShaderProgramCreator("depth_cube")
.attributeLocations(vao->getAttributeLocations()).create();
flame_positions_ab = SharedArrayBuffer(new ArrayBuffer());
flame_positions_ab->defineAttribute("aPosition", GL_FLOAT, 3);
flame_positions_ab->defineAttribute("aColor", GL_FLOAT, 3);
flame_positions = SharedVertexArrayObject(new VertexArrayObject());
flame_positions->setMode(GL_POINTS);
flame_positions->attachAllAttributes(flame_positions_ab);
flameShader = ShaderProgramCreator("flame")
.attributeLocations(flame_positions->getAttributeLocations()).create();
flamePostShader = ShaderProgramCreator("flame_post")
.attributeLocations(fullscreen_quad->getAttributeLocations()).create();
glGetIntegerv(GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS, &number_of_texture_units);
printf("Your graphics card supports %d texture units.\n", number_of_texture_units);
// Exit if we need more texture units
if (number_of_texture_units < 16) {
printf("You need at least 16 texture units to run this application. Exiting\n");
exit(-1);
}
depth_directionalMaps = std::vector<SharedTexture2D>(3);
framebuffer_directional = std::vector<SharedFrameBufferObject>(3);
for (unsigned int i = 0; i<depth_directionalMaps.size(); i++) {
depth_directionalMaps.at(i) = SharedTexture2D( new Texture2D(windowSize, GL_DEPTH_COMPONENT24));
depth_directionalMaps.at(i)->setMinFilter(GL_NEAREST);
depth_directionalMaps.at(i)->setMagFilter(GL_NEAREST);
depth_directionalMaps.at(i)->setWrapS(GL_CLAMP_TO_EDGE);
depth_directionalMaps.at(i)->setWrapT(GL_CLAMP_TO_EDGE);
depth_directionalMaps.at(i)->setCompareMode(GL_COMPARE_REF_TO_TEXTURE);
}
for (unsigned int i = 0; i<framebuffer_directional.size(); i++) {
framebuffer_directional.at(i) = SharedFrameBufferObject(new FrameBufferObject());
framebuffer_directional.at(i)->setDepthTexture(depth_directionalMaps.at(i));
framebuffer_directional.at(i)->validate();
}
lightingShader->use();
for (unsigned int i = 0; i<depth_directionalMaps.size(); i++) {
// start with texture unit 1 because the first is reserved for the texture
lightingShader->setTexture("shadowMap_directional" + std::to_string(i), depth_directionalMaps.at(i), i+1);
}
// always generate and bind 10 cube maps, because otherwise the shader won't work
depth_cubeMaps = std::vector<ACGL::OpenGL::SharedTextureCubeMap>(10);
for (unsigned int i = 0; i<depth_cubeMaps.size(); i++) {
depth_cubeMaps.at(i) = SharedTextureCubeMap(new TextureCubeMap(glm::vec2(cube_size, cube_size), GL_DEPTH_COMPONENT24));
depth_cubeMaps.at(i)->setMinFilter(GL_NEAREST);
depth_cubeMaps.at(i)->setMagFilter(GL_NEAREST);
depth_cubeMaps.at(i)->setWrapS(GL_CLAMP_TO_EDGE);
depth_cubeMaps.at(i)->setWrapT(GL_CLAMP_TO_EDGE);
depth_cubeMaps.at(i)->setCompareMode(GL_COMPARE_REF_TO_TEXTURE);
}
framebuffer_cube = SharedFrameBufferObject(new FrameBufferObject());
if (level->getLights()->size() > 0) {
for(unsigned int i = 0; i<depth_cubeMaps.size(); i++){
// start with texture unit 4 because the first four are used by the texture and the directional shadow map
lightingShader->setTexture("shadowMap_cube" + std::to_string(i), depth_cubeMaps.at(i), i+4);
}
}
flame_fbo_color_texture = SharedTexture2D(new Texture2D(windowSize, GL_RGBA8));
flame_fbo_color_texture->setMinFilter(GL_NEAREST);
flame_fbo_color_texture->setMagFilter(GL_NEAREST);
flame_fbo_color_texture->setWrapS(GL_CLAMP_TO_BORDER);
flame_fbo_color_texture->setWrapT(GL_CLAMP_TO_BORDER);
flame_fbo_depth_texture = SharedTexture2D(new Texture2D(windowSize, GL_DEPTH_COMPONENT24));
flame_fbo_depth_texture->setMinFilter(GL_NEAREST);
flame_fbo_depth_texture->setMagFilter(GL_NEAREST);
flame_fbo_depth_texture->setWrapS(GL_CLAMP_TO_BORDER);
flame_fbo_depth_texture->setWrapT(GL_CLAMP_TO_BORDER);
framebuffer_flames = SharedFrameBufferObject(new FrameBufferObject());
framebuffer_flames->attachColorTexture("oColor", flame_fbo_color_texture);
framebuffer_flames->setDepthTexture(flame_fbo_depth_texture);
framebuffer_flames->setClearColor(glm::vec4(0.0f, 0.0f, 0.0f, 0.0f));
framebuffer_flames->validate();
flamePostShader->use();
flamePostShader->setTexture("flame_fbo", flame_fbo_color_texture, 15);
updateClosestLights();
}
glm::uvec2 Graphics::getWindowSize() {
return windowSize;
}
void Graphics::render(double time)
{
// At first render shadows
depthCubeShader->use();
depthCubeShader->setUniform("farPlane", farPlane);
// render depth textures for point lights
glViewport(0, 0, cube_size, cube_size);
glm::mat4 depthProjectionMatrix_pointlights = glm::perspective(1.571f, (float)cube_size/(float)cube_size, 0.1f, farPlane);
glm::vec3 looking_directions[6] = {glm::vec3(1.0f, 0.0f, 0.0f), glm::vec3(-1.0f, 0.0f, 0.0f), glm::vec3(0.0f, 1.0f, 0.0f),
glm::vec3(0.0f, -1.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f), glm::vec3(0.0f, 0.0f, -1.0f)};
glm::vec3 upvectors[6] = {glm::vec3(0.0f, -1.0f, 0.0f),glm::vec3(0.0f, -1.0f, 0.0f),glm::vec3(0.0f, 0.0f, -1.0f),
glm::vec3(0.0f, 0.0f, -1.0f),glm::vec3(0.0f, -1.0f, 0.0f),glm::vec3(0.0f, -1.0f, 0.0f)};
framebuffer_cube->bind();
for (unsigned int i_pointlight = 0; i_pointlight<closestLights.size() && i_pointlight < maxShadowRenderCount; i_pointlight++) {
// render each side of the cube
for (int i_face = 0; i_face<6; i_face++) {
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i_face, depth_cubeMaps.at(i_pointlight)->getObjectName(), 0);
glClear(GL_DEPTH_BUFFER_BIT);
glm::mat4 viewMatrix = glm::lookAt(closestLights.at(i_pointlight).getPosition(),
closestLights.at(i_pointlight).getPosition() + looking_directions[i_face], upvectors[i_face]);
glm::mat4 depthViewProjectionMatrix_face = depthProjectionMatrix_pointlights * viewMatrix;
std::vector<glm::mat4> viewMatrixVector = std::vector<glm::mat4>();
viewMatrixVector.push_back(viewMatrix);
level->render(depthCubeShader, false, &depthViewProjectionMatrix_face, &viewMatrixVector);
if (!framebuffer_cube->isFrameBufferObjectComplete()) {
printf("Framebuffer incomplete, unknown error occured during shadow generation!\n");
}
}
}
// render depth textures for sun
depthShader->use();
glViewport(0, 0, windowSize.x, windowSize.y);
std::vector<glm::mat4> depthViewProjectionMatrices = std::vector<glm::mat4>(framebuffer_directional.size());
glm::vec3 sunVector = (level->getCameraCenter()->getPosition() + level->getDirectionalLight()->getPosition());
for (unsigned int i = 0; i<framebuffer_directional.size(); i++) {
framebuffer_directional.at(i)->bind();
glClear(GL_DEPTH_BUFFER_BIT);
float projection_size = 0.0f;
switch(i) {
case 0:
projection_size = 10.0f;
break;
case 1:
projection_size = 30.0f;
break;
case 2:
projection_size = farPlane/1.5f;
break;
}
depthViewProjectionMatrices.at(i) = glm::ortho<float>(-projection_size, projection_size, -projection_size, projection_size, -farPlane/1.5f, farPlane/1.5f) *
glm::lookAt(sunVector, level->getCameraCenter()->getPosition(), glm::vec3(0,1,0));
level->render(depthShader, false, &depthViewProjectionMatrices.at(i));
if (!framebuffer_directional.at(i)->isFrameBufferObjectComplete()) {
printf("Framebuffer incomplete, unknown error occured during shadow generation!\n");
}
}
// lighting render pass
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
lightingShader->use();
//set lighting parameters
// TODO look into doing this less often, offload to another thread?
// TODO figure out how to deal with bigger numbers of lights. load the nearest on demand?
double nextUpdate = lastUpdate + lightUpdateDelay;
if (time >= nextUpdate)
{
updateLights();
lastUpdate = time;
}
// convert texture to homogenouse coordinates
glm::mat4 biasMatrix(
0.5, 0.0, 0.0, 0.0,
0.0, 0.5, 0.0, 0.0,
0.0, 0.0, 0.5, 0.0,
0.5, 0.5, 0.5, 1.0
);
std::vector<glm::mat4> depthBiasVPs = std::vector<glm::mat4>(depthViewProjectionMatrices.size());
for (unsigned int i = 0; i<depthBiasVPs.size(); i++) {
depthBiasVPs.at(i) = biasMatrix * depthViewProjectionMatrices.at(i);
}
lightingShader->setUniform("farPlane", farPlane);
// set fog Parameters
lightingShader->setUniform("fogColor", level->getFogColour());
lightingShader->setUniform("cameraCenter", level->getCameraCenter()->getPosition());
// set Material Parameters
lightingShader->setUniform("ambientColor", level->getAmbientLight());
lightingShader->setUniform("camera", level->getPhysics()->getCameraPosition());
//set view and projection matrix
glm::mat4 lightingViewProjectionMatrix = glm::perspective(1.571f, (float)windowSize.x/(float)windowSize.y, 0.1f, farPlane) * buildViewMatrix(level);
// render the level
level->render(lightingShader, true, &lightingViewProjectionMatrix, &depthBiasVPs);
// cull faces to get consistent color while using alpha
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
// draw flames on top
framebuffer_flames->bind();
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
flameShader->use();
flameShader->setUniform("viewProjectionMatrix", lightingViewProjectionMatrix);
flameShader->setUniform("time", (float) time);
flameShader->setUniform("bottom", true);
flameShader->setUniform("left", true);
flame_positions->render();
flameShader->setUniform("left", false);
flame_positions->render();
flameShader->setUniform("bottom", false);
flameShader->setUniform("left", true);
flame_positions->render();
flameShader->setUniform("left", false);
flame_positions->render();
glDisable(GL_CULL_FACE);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
flamePostShader->use();
fullscreen_quad->render();
}
bool Graphics::compareLightDistances(Light a, Light b) {
if (glm::distance(this->level->getCameraCenter()->getPosition(), a.getPosition()) <
glm::distance(this->level->getCameraCenter()->getPosition(), b.getPosition())) {
return true;
}
else {
return false;
}
}
void Graphics::updateClosestLights() {
closestLights = std::vector<Light>(*level->getLights());
std::sort(closestLights.begin(),
closestLights.end(),
[this](Light a, Light b) {return compareLightDistances(a, b); });
if (level->getLights()->size() > 32) {
closestLights = std::vector<Light>(&closestLights[0],
&closestLights[31]);
}
}
void Graphics::updateLights() {
updateClosestLights();
if (closestLights.size() > 0) {
lightingShader->setUniform("lightCount", (int) closestLights.size());
lightingShader->setUniform("maxShadowRenderCount", std::min((int) closestLights.size(), (int)maxShadowRenderCount));
// Build light position array
glm::vec3 lightSources[closestLights.size()];
for(unsigned int i = 0; i<closestLights.size(); i++) {
lightSources[i] = closestLights.at(i).getPosition();
}
glUniform3fv(lightingShader->getUniformLocation("lightSources"),
sizeof(lightSources), (GLfloat*) lightSources);
// Build light colour array
glm::vec3 lightColours[closestLights.size()];
for(unsigned int i = 0; i<closestLights.size(); i++) {
lightColours[i] = closestLights.at(i).getColour();
}
glUniform3fv(lightingShader->getUniformLocation("lightColors"),
sizeof(lightColours), (GLfloat*) lightColours);
// Build light attenuation array
float lightIntensities[closestLights.size()];
for(unsigned int i = 0; i<closestLights.size(); i++) {
lightIntensities[i] = closestLights.at(i).getIntensity();
}
glUniform1fv(lightingShader->getUniformLocation("lightIntensities"),
sizeof(lightIntensities), (GLfloat*) lightIntensities);
}
// set directional Light
if(level->getDirectionalLight()) {
lightingShader->setUniform("directionalLightVector",
level->getDirectionalLight()->getPosition());
lightingShader->setUniform("directionalColor",
level->getDirectionalLight()->getColour());
lightingShader->setUniform("directionalIntensity",
level->getDirectionalLight()->getIntensity());
}
float flameData[closestLights.size() * 6] = {};
int flameIndex = 0;
for (unsigned int i = 0; i<closestLights.size(); i++) {
if (closestLights.at(i).getFlameYOffset() != 0.0f) {
flameData[flameIndex + 0] = closestLights.at(i).getPosition().x;
flameData[flameIndex + 1] = closestLights.at(i).getPosition().y + closestLights.at(i).getFlameYOffset();
flameData[flameIndex + 2] = closestLights.at(i).getPosition().z;
flameData[flameIndex + 3] = closestLights.at(i).getColour().r;
flameData[flameIndex + 3] = closestLights.at(i).getColour().r;
flameData[flameIndex + 4] = closestLights.at(i).getColour().g;
flameData[flameIndex + 5] = closestLights.at(i).getColour().b;
flameIndex+=6;
}
}
flame_positions_ab->setDataElements(flameIndex, flameData);
}
void Graphics::resize(glm::uvec2 windowSize) {
this->windowSize = windowSize;
for (unsigned int i = 0; i<depth_directionalMaps.size(); i++) {
depth_directionalMaps.at(i)->resize(glm::vec2(windowSize.x, windowSize.y));
}
}
glm::mat4 Graphics::buildViewMatrix(Level* level) {
//construct lookAt (cameraPosition = cameraCenter + cameraVector)
if(level->getCamera()->getIsPhysicsCamera())
return glm::lookAt(level->getCamera()->getPosition(), level->getCamera()->getPosition() + level->getCamera()->getDirection(), glm::vec3(0.0f, 1.0f, 0.0f));
return glm::lookAt((level->getCameraCenter()->getPosition() + level->getCamera()->getVector()),
level->getCameraCenter()->getPosition(), glm::vec3(0.0f, 1.0f, 0.0f));
}
float Graphics::getFarPlane() {
return farPlane;
}
void Graphics::saveDepthBufferToDisk(int face, std::string filename) {
printf("Starting saving of depth buffer...\n");
float *depthbuffer = new float[1024*1024];
std::vector<unsigned char> image (1024 * 1024 * 4);
glGetTexImage(GL_TEXTURE_CUBE_MAP_POSITIVE_X + face, 0, GL_DEPTH_COMPONENT, GL_FLOAT, depthbuffer);
for (unsigned int i = 0; i<1024*1024; i++) {
image[i * 4 + 0] = depthbuffer[i] * 255;
image[i * 4 + 1] = depthbuffer[i] * 255;
image[i * 4 + 2] = depthbuffer[i] * 255;
image[i * 4 + 3] = 255;
}
unsigned error = lodepng::encode(filename.c_str(), image, 1024, 1024);
if (error) {
std::cout << "Encoder error " << error << ": " << lodepng_error_text(error) << std::endl;
}
else {
printf("Saving complete!\n");
}
delete [] depthbuffer;
}