1330 lines
39 KiB
C++
1330 lines
39 KiB
C++
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
|
|
|
|
// Collision Radius
|
|
#define COLLISION_RADIUS 0.0f
|
|
|
|
#include "BenchmarkDemo.h"
|
|
#ifdef USE_GRAPHICAL_BENCHMARK
|
|
#include "GlutStuff.h"
|
|
#endif //USE_GRAPHICAL_BENCHMARK
|
|
|
|
///btBulletDynamicsCommon.h is the main Bullet include file, contains most common include files.
|
|
#include "btBulletDynamicsCommon.h"
|
|
#include <stdio.h> //printf debugging
|
|
#include "Taru.mdl"
|
|
#include "landscape.mdl"
|
|
#include "BulletCollision/BroadphaseCollision/btDbvtBroadphase.h"
|
|
#ifdef USE_PARALLEL_DISPATCHER_BENCHMARK
|
|
#include "BulletMultiThreaded/SpuGatheringCollisionDispatcher.h"
|
|
#include "BulletMultiThreaded/SequentialThreadSupport.h"
|
|
#include "BulletMultiThreaded/SpuNarrowPhaseCollisionTask/SpuGatheringCollisionTask.h"
|
|
#endif
|
|
|
|
#include "BulletCollision/CollisionDispatch/btSimulationIslandManager.h"
|
|
|
|
|
|
#ifdef USE_PARALLEL_DISPATCHER_BENCHMARK
|
|
#ifdef _WIN32
|
|
#include "BulletMultiThreaded/Win32ThreadSupport.h"
|
|
#elif defined (USE_PTHREADS)
|
|
#include "BulletMultiThreaded/PosixThreadSupport.h"
|
|
#endif
|
|
#include "BulletMultiThreaded/SpuGatheringCollisionDispatcher.h"
|
|
#include "BulletMultiThreaded/btParallelConstraintSolver.h"
|
|
|
|
|
|
|
|
|
|
btThreadSupportInterface* createSolverThreadSupport(int maxNumThreads)
|
|
{
|
|
//#define SEQUENTIAL
|
|
#ifdef SEQUENTIAL
|
|
SequentialThreadSupport::SequentialThreadConstructionInfo tci("solverThreads",SolverThreadFunc,SolverlsMemoryFunc);
|
|
SequentialThreadSupport* threadSupport = new SequentialThreadSupport(tci);
|
|
threadSupport->startSPU();
|
|
#else
|
|
|
|
#ifdef _WIN32
|
|
Win32ThreadSupport::Win32ThreadConstructionInfo threadConstructionInfo("solverThreads",SolverThreadFunc,SolverlsMemoryFunc,maxNumThreads);
|
|
Win32ThreadSupport* threadSupport = new Win32ThreadSupport(threadConstructionInfo);
|
|
threadSupport->startSPU();
|
|
#elif defined (USE_PTHREADS)
|
|
PosixThreadSupport::ThreadConstructionInfo solverConstructionInfo("solver", SolverThreadFunc,
|
|
SolverlsMemoryFunc, maxNumThreads);
|
|
|
|
PosixThreadSupport* threadSupport = new PosixThreadSupport(solverConstructionInfo);
|
|
|
|
#else
|
|
SequentialThreadSupport::SequentialThreadConstructionInfo tci("solverThreads",SolverThreadFunc,SolverlsMemoryFunc);
|
|
SequentialThreadSupport* threadSupport = new SequentialThreadSupport(tci);
|
|
threadSupport->startSPU();
|
|
#endif
|
|
|
|
#endif
|
|
|
|
return threadSupport;
|
|
}
|
|
#endif
|
|
|
|
class btRaycastBar2
|
|
{
|
|
public:
|
|
btVector3 source[NUMRAYS];
|
|
btVector3 dest[NUMRAYS];
|
|
btVector3 direction[NUMRAYS];
|
|
btVector3 hit[NUMRAYS];
|
|
btVector3 normal[NUMRAYS];
|
|
|
|
int frame_counter;
|
|
int ms;
|
|
int sum_ms;
|
|
int sum_ms_samples;
|
|
int min_ms;
|
|
int max_ms;
|
|
|
|
#ifdef USE_BT_CLOCK
|
|
btClock frame_timer;
|
|
#endif //USE_BT_CLOCK
|
|
|
|
btScalar dx;
|
|
btScalar min_x;
|
|
btScalar max_x;
|
|
btScalar max_y;
|
|
btScalar sign;
|
|
|
|
btRaycastBar2 ()
|
|
{
|
|
ms = 0;
|
|
max_ms = 0;
|
|
min_ms = 9999;
|
|
sum_ms_samples = 0;
|
|
sum_ms = 0;
|
|
}
|
|
|
|
|
|
|
|
btRaycastBar2 (btScalar ray_length, btScalar z,btScalar max_y)
|
|
{
|
|
frame_counter = 0;
|
|
ms = 0;
|
|
max_ms = 0;
|
|
min_ms = 9999;
|
|
sum_ms_samples = 0;
|
|
sum_ms = 0;
|
|
dx = 10.0;
|
|
min_x = 0;
|
|
max_x = 0;
|
|
this->max_y = max_y;
|
|
sign = 1.0;
|
|
btScalar dalpha = 2*SIMD_2_PI/NUMRAYS;
|
|
for (int i = 0; i < NUMRAYS; i++)
|
|
{
|
|
btScalar alpha = dalpha * i;
|
|
// rotate around by alpha degrees y
|
|
btQuaternion q(btVector3(0.0, 1.0, 0.0), alpha);
|
|
direction[i] = btVector3(1.0, 0.0, 0.0);
|
|
direction[i] = quatRotate(q , direction[i]);
|
|
direction[i] = direction[i] * ray_length;
|
|
|
|
|
|
source[i] = btVector3(min_x, max_y, z);
|
|
dest[i] = source[i] + direction[i];
|
|
dest[i][1]=-1000;
|
|
normal[i] = btVector3(1.0, 0.0, 0.0);
|
|
}
|
|
}
|
|
|
|
void move (btScalar dt)
|
|
{
|
|
if (dt > btScalar(1.0/60.0))
|
|
dt = btScalar(1.0/60.0);
|
|
for (int i = 0; i < NUMRAYS; i++)
|
|
{
|
|
source[i][0] += dx * dt * sign;
|
|
dest[i][0] += dx * dt * sign;
|
|
}
|
|
if (source[0][0] < min_x)
|
|
sign = 1.0;
|
|
else if (source[0][0] > max_x)
|
|
sign = -1.0;
|
|
}
|
|
|
|
void cast (btCollisionWorld* cw)
|
|
{
|
|
#ifdef USE_BT_CLOCK
|
|
frame_timer.reset ();
|
|
#endif //USE_BT_CLOCK
|
|
|
|
#ifdef BATCH_RAYCASTER
|
|
if (!gBatchRaycaster)
|
|
return;
|
|
|
|
gBatchRaycaster->clearRays ();
|
|
for (int i = 0; i < NUMRAYS; i++)
|
|
{
|
|
gBatchRaycaster->addRay (source[i], dest[i]);
|
|
}
|
|
gBatchRaycaster->performBatchRaycast ();
|
|
for (int i = 0; i < gBatchRaycaster->getNumRays (); i++)
|
|
{
|
|
const SpuRaycastTaskWorkUnitOut& out = (*gBatchRaycaster)[i];
|
|
hit[i].setInterpolate3(source[i],dest[i],out.hitFraction);
|
|
normal[i] = out.hitNormal;
|
|
normal[i].normalize ();
|
|
}
|
|
#else
|
|
for (int i = 0; i < NUMRAYS; i++)
|
|
{
|
|
btCollisionWorld::ClosestRayResultCallback cb(source[i], dest[i]);
|
|
|
|
cw->rayTest (source[i], dest[i], cb);
|
|
if (cb.hasHit ())
|
|
{
|
|
hit[i] = cb.m_hitPointWorld;
|
|
normal[i] = cb.m_hitNormalWorld;
|
|
normal[i].normalize ();
|
|
} else {
|
|
hit[i] = dest[i];
|
|
normal[i] = btVector3(1.0, 0.0, 0.0);
|
|
}
|
|
|
|
}
|
|
#ifdef USE_BT_CLOCK
|
|
ms += frame_timer.getTimeMilliseconds ();
|
|
#endif //USE_BT_CLOCK
|
|
frame_counter++;
|
|
if (frame_counter > 50)
|
|
{
|
|
min_ms = ms < min_ms ? ms : min_ms;
|
|
max_ms = ms > max_ms ? ms : max_ms;
|
|
sum_ms += ms;
|
|
sum_ms_samples++;
|
|
btScalar mean_ms = (btScalar)sum_ms/(btScalar)sum_ms_samples;
|
|
printf("%d rays in %d ms %d %d %f\n", NUMRAYS * frame_counter, ms, min_ms, max_ms, mean_ms);
|
|
ms = 0;
|
|
frame_counter = 0;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void draw ()
|
|
{
|
|
#ifdef USE_GRAPHICAL_BENCHMARK
|
|
glDisable (GL_LIGHTING);
|
|
glColor3f (0.0, 1.0, 0.0);
|
|
glBegin (GL_LINES);
|
|
int i;
|
|
|
|
for (i = 0; i < NUMRAYS; i++)
|
|
{
|
|
glVertex3f (source[i][0], source[i][1], source[i][2]);
|
|
glVertex3f (hit[i][0], hit[i][1], hit[i][2]);
|
|
}
|
|
glEnd ();
|
|
glColor3f (1.0, 1.0, 1.0);
|
|
glBegin (GL_LINES);
|
|
for (i = 0; i < NUMRAYS; i++)
|
|
{
|
|
glVertex3f (hit[i][0], hit[i][1], hit[i][2]);
|
|
glVertex3f (hit[i][0] + normal[i][0], hit[i][1] + normal[i][1], hit[i][2] + normal[i][2]);
|
|
}
|
|
glEnd ();
|
|
glColor3f (0.0, 1.0, 1.0);
|
|
glBegin (GL_POINTS);
|
|
for ( i = 0; i < NUMRAYS; i++)
|
|
{
|
|
glVertex3f (hit[i][0], hit[i][1], hit[i][2]);
|
|
}
|
|
glEnd ();
|
|
glEnable (GL_LIGHTING);
|
|
#endif //USE_GRAPHICAL_BENCHMARK
|
|
|
|
}
|
|
};
|
|
|
|
|
|
static btRaycastBar2 raycastBar;
|
|
|
|
|
|
void BenchmarkDemo::clientMoveAndDisplay()
|
|
{
|
|
#ifdef USE_GRAPHICAL_BENCHMARK
|
|
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
|
#endif //USE_GRAPHICAL_BENCHMARK
|
|
|
|
//simple dynamics world doesn't handle fixed-time-stepping
|
|
//float ms = getDeltaTimeMicroseconds();
|
|
|
|
///step the simulation
|
|
if (m_dynamicsWorld)
|
|
{
|
|
m_dynamicsWorld->stepSimulation(btScalar(1./60.));
|
|
//optional but useful: debug drawing
|
|
m_dynamicsWorld->debugDrawWorld();
|
|
}
|
|
|
|
if (m_benchmark==7)
|
|
{
|
|
castRays();
|
|
|
|
raycastBar.draw();
|
|
|
|
}
|
|
|
|
renderme();
|
|
|
|
#ifdef USE_GRAPHICAL_BENCHMARK
|
|
glFlush();
|
|
|
|
swapBuffers();
|
|
#endif //USE_GRAPHICAL_BENCHMARK
|
|
|
|
}
|
|
|
|
|
|
|
|
void BenchmarkDemo::displayCallback(void)
|
|
{
|
|
|
|
#ifdef USE_GRAPHICAL_BENCHMARK
|
|
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
|
|
|
renderme();
|
|
|
|
//optional but useful: debug drawing to detect problems
|
|
if (m_dynamicsWorld)
|
|
m_dynamicsWorld->debugDrawWorld();
|
|
|
|
glFlush();
|
|
swapBuffers();
|
|
#endif //USE_GRAPHICAL_BENCHMARK
|
|
}
|
|
|
|
|
|
|
|
|
|
void BenchmarkDemo::initPhysics()
|
|
{
|
|
|
|
setCameraDistance(btScalar(100.));
|
|
|
|
///collision configuration contains default setup for memory, collision setup
|
|
btDefaultCollisionConstructionInfo cci;
|
|
cci.m_defaultMaxPersistentManifoldPoolSize = 32768;
|
|
m_collisionConfiguration = new btDefaultCollisionConfiguration(cci);
|
|
|
|
///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded)
|
|
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
|
|
|
|
m_dispatcher->setDispatcherFlags(btCollisionDispatcher::CD_DISABLE_CONTACTPOOL_DYNAMIC_ALLOCATION);
|
|
|
|
#if USE_PARALLEL_DISPATCHER_BENCHMARK
|
|
|
|
int maxNumOutstandingTasks = 4;
|
|
#ifdef _WIN32
|
|
Win32ThreadSupport* threadSupportCollision = new Win32ThreadSupport(Win32ThreadSupport::Win32ThreadConstructionInfo( "collision",processCollisionTask, createCollisionLocalStoreMemory,maxNumOutstandingTasks));
|
|
#elif defined (USE_PTHREADS)
|
|
PosixThreadSupport::ThreadConstructionInfo collisionConstructionInfo( "collision",processCollisionTask, createCollisionLocalStoreMemory,maxNumOutstandingTasks);
|
|
PosixThreadSupport* threadSupportCollision = new PosixThreadSupport(collisionConstructionInfo);
|
|
#endif
|
|
//SequentialThreadSupport::SequentialThreadConstructionInfo sci("spuCD", processCollisionTask, createCollisionLocalStoreMemory);
|
|
//SequentialThreadSupport* seq = new SequentialThreadSupport(sci);
|
|
m_dispatcher = new SpuGatheringCollisionDispatcher(threadSupportCollision,1,m_collisionConfiguration);
|
|
#endif
|
|
|
|
|
|
///the maximum size of the collision world. Make sure objects stay within these boundaries
|
|
///Don't make the world AABB size too large, it will harm simulation quality and performance
|
|
btVector3 worldAabbMin(-1000,-1000,-1000);
|
|
btVector3 worldAabbMax(1000,1000,1000);
|
|
|
|
btHashedOverlappingPairCache* pairCache = new btHashedOverlappingPairCache();
|
|
m_overlappingPairCache = new btAxisSweep3(worldAabbMin,worldAabbMax,3500,pairCache);
|
|
// m_overlappingPairCache = new btSimpleBroadphase();
|
|
// m_overlappingPairCache = new btDbvtBroadphase();
|
|
|
|
|
|
///the default constraint solver. For parallel processing you can use a different solver (see Extras/BulletMultiThreaded)
|
|
#ifdef USE_PARALLEL_DISPATCHER_BENCHMARK
|
|
|
|
btThreadSupportInterface* thread = createSolverThreadSupport(4);
|
|
btConstraintSolver* sol = new btParallelConstraintSolver(thread);
|
|
#else
|
|
btSequentialImpulseConstraintSolver* sol = new btSequentialImpulseConstraintSolver;
|
|
#endif //USE_PARALLEL_DISPATCHER_BENCHMARK
|
|
|
|
|
|
m_solver = sol;
|
|
|
|
btDiscreteDynamicsWorld* dynamicsWorld;
|
|
m_dynamicsWorld = dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_overlappingPairCache,m_solver,m_collisionConfiguration);
|
|
|
|
#ifdef USE_PARALLEL_DISPATCHER_BENCHMARK
|
|
dynamicsWorld->getSimulationIslandManager()->setSplitIslands(false);
|
|
#endif //USE_PARALLEL_DISPATCHER_BENCHMARK
|
|
|
|
///the following 3 lines increase the performance dramatically, with a little bit of loss of quality
|
|
m_dynamicsWorld->getSolverInfo().m_solverMode |=SOLVER_ENABLE_FRICTION_DIRECTION_CACHING; //don't recalculate friction values each frame
|
|
dynamicsWorld->getSolverInfo().m_numIterations = 5; //few solver iterations
|
|
m_defaultContactProcessingThreshold = 0.f;//used when creating bodies: body->setContactProcessingThreshold(...);
|
|
|
|
|
|
m_dynamicsWorld->setGravity(btVector3(0,-10,0));
|
|
|
|
if (m_benchmark<5)
|
|
{
|
|
///create a few basic rigid bodies
|
|
btCollisionShape* groundShape = new btBoxShape(btVector3(btScalar(250.),btScalar(50.),btScalar(250.)));
|
|
// btCollisionShape* groundShape = new btStaticPlaneShape(btVector3(0,1,0),0);
|
|
|
|
m_collisionShapes.push_back(groundShape);
|
|
|
|
btTransform groundTransform;
|
|
groundTransform.setIdentity();
|
|
groundTransform.setOrigin(btVector3(0,-50,0));
|
|
|
|
//We can also use DemoApplication::localCreateRigidBody, but for clarity it is provided here:
|
|
{
|
|
btScalar mass(0.);
|
|
|
|
//rigidbody is dynamic if and only if mass is non zero, otherwise static
|
|
bool isDynamic = (mass != 0.f);
|
|
|
|
btVector3 localInertia(0,0,0);
|
|
if (isDynamic)
|
|
groundShape->calculateLocalInertia(mass,localInertia);
|
|
|
|
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
|
|
btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform);
|
|
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,groundShape,localInertia);
|
|
btRigidBody* body = new btRigidBody(rbInfo);
|
|
|
|
//add the body to the dynamics world
|
|
m_dynamicsWorld->addRigidBody(body);
|
|
}
|
|
}
|
|
|
|
switch (m_benchmark)
|
|
{
|
|
case 1:
|
|
{
|
|
createTest1();
|
|
break;
|
|
}
|
|
case 2:
|
|
{
|
|
createTest2();
|
|
break;
|
|
}
|
|
case 3:
|
|
{
|
|
createTest3();
|
|
break;
|
|
}
|
|
case 4:
|
|
{
|
|
createTest4();
|
|
break;
|
|
}
|
|
case 5:
|
|
{
|
|
createTest5();
|
|
break;
|
|
}
|
|
case 6:
|
|
{
|
|
createTest6();
|
|
break;
|
|
}
|
|
case 7:
|
|
{
|
|
createTest7();
|
|
break;
|
|
}
|
|
|
|
|
|
default:
|
|
{
|
|
}
|
|
}
|
|
|
|
|
|
clientResetScene();
|
|
}
|
|
|
|
|
|
void BenchmarkDemo::createTest1()
|
|
{
|
|
// 3000
|
|
int size = 8;
|
|
const float cubeSize = 1.0f;
|
|
float spacing = cubeSize;
|
|
btVector3 pos(0.0f, cubeSize * 2,0.f);
|
|
float offset = -size * (cubeSize * 2.0f + spacing) * 0.5f;
|
|
|
|
btBoxShape* blockShape = new btBoxShape(btVector3(cubeSize-COLLISION_RADIUS,cubeSize-COLLISION_RADIUS,cubeSize-COLLISION_RADIUS));
|
|
btVector3 localInertia(0,0,0);
|
|
float mass = 2.f;
|
|
blockShape->calculateLocalInertia(mass,localInertia);
|
|
|
|
btTransform trans;
|
|
trans.setIdentity();
|
|
|
|
for(int k=0;k<47;k++) {
|
|
for(int j=0;j<size;j++) {
|
|
pos[2] = offset + (float)j * (cubeSize * 2.0f + spacing);
|
|
for(int i=0;i<size;i++) {
|
|
pos[0] = offset + (float)i * (cubeSize * 2.0f + spacing);
|
|
|
|
trans.setOrigin(pos);
|
|
btRigidBody* cmbody;
|
|
cmbody= localCreateRigidBody(mass,trans,blockShape);
|
|
}
|
|
}
|
|
offset -= 0.05f * spacing * (size-1);
|
|
// spacing *= 1.01f;
|
|
pos[1] += (cubeSize * 2.0f + spacing);
|
|
}
|
|
}
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Pyramid 3
|
|
|
|
void BenchmarkDemo::createWall(const btVector3& offsetPosition,int stackSize,const btVector3& boxSize)
|
|
{
|
|
|
|
btBoxShape* blockShape = new btBoxShape(btVector3(boxSize[0]-COLLISION_RADIUS,boxSize[1]-COLLISION_RADIUS,boxSize[2]-COLLISION_RADIUS));
|
|
|
|
float mass = 1.f;
|
|
btVector3 localInertia(0,0,0);
|
|
blockShape->calculateLocalInertia(mass,localInertia);
|
|
|
|
// btScalar diffX = boxSize[0] * 1.0f;
|
|
btScalar diffY = boxSize[1] * 1.0f;
|
|
btScalar diffZ = boxSize[2] * 1.0f;
|
|
|
|
btScalar offset = -stackSize * (diffZ * 2.0f) * 0.5f;
|
|
btVector3 pos(0.0f, diffY, 0.0f);
|
|
|
|
btTransform trans;
|
|
trans.setIdentity();
|
|
|
|
while(stackSize) {
|
|
for(int i=0;i<stackSize;i++) {
|
|
pos[2] = offset + (float)i * (diffZ * 2.0f);
|
|
|
|
trans.setOrigin(offsetPosition + pos);
|
|
localCreateRigidBody(mass,trans,blockShape);
|
|
|
|
}
|
|
offset += diffZ;
|
|
pos[1] += (diffY * 2.0f);
|
|
stackSize--;
|
|
}
|
|
}
|
|
|
|
void BenchmarkDemo::createPyramid(const btVector3& offsetPosition,int stackSize,const btVector3& boxSize)
|
|
{
|
|
btScalar space = 0.0001f;
|
|
|
|
btVector3 pos(0.0f, boxSize[1], 0.0f);
|
|
|
|
btBoxShape* blockShape = new btBoxShape(btVector3(boxSize[0]-COLLISION_RADIUS,boxSize[1]-COLLISION_RADIUS,boxSize[2]-COLLISION_RADIUS));
|
|
btTransform trans;
|
|
trans.setIdentity();
|
|
|
|
btScalar mass = 1.f;
|
|
btVector3 localInertia(0,0,0);
|
|
blockShape->calculateLocalInertia(mass,localInertia);
|
|
|
|
|
|
btScalar diffX = boxSize[0]*1.02f;
|
|
btScalar diffY = boxSize[1]*1.02f;
|
|
btScalar diffZ = boxSize[2]*1.02f;
|
|
|
|
btScalar offsetX = -stackSize * (diffX * 2.0f + space) * 0.5f;
|
|
btScalar offsetZ = -stackSize * (diffZ * 2.0f + space) * 0.5f;
|
|
while(stackSize) {
|
|
for(int j=0;j<stackSize;j++) {
|
|
pos[2] = offsetZ + (float)j * (diffZ * 2.0f + space);
|
|
for(int i=0;i<stackSize;i++) {
|
|
pos[0] = offsetX + (float)i * (diffX * 2.0f + space);
|
|
trans.setOrigin(offsetPosition + pos);
|
|
this->localCreateRigidBody(mass,trans,blockShape);
|
|
|
|
|
|
}
|
|
}
|
|
offsetX += diffX;
|
|
offsetZ += diffZ;
|
|
pos[1] += (diffY * 2.0f + space);
|
|
stackSize--;
|
|
}
|
|
|
|
}
|
|
|
|
const btVector3 rotate( const btQuaternion& quat, const btVector3 & vec )
|
|
{
|
|
float tmpX, tmpY, tmpZ, tmpW;
|
|
tmpX = ( ( ( quat.getW() * vec.getX() ) + ( quat.getY() * vec.getZ() ) ) - ( quat.getZ() * vec.getY() ) );
|
|
tmpY = ( ( ( quat.getW() * vec.getY() ) + ( quat.getZ() * vec.getX() ) ) - ( quat.getX() * vec.getZ() ) );
|
|
tmpZ = ( ( ( quat.getW() * vec.getZ() ) + ( quat.getX() * vec.getY() ) ) - ( quat.getY() * vec.getX() ) );
|
|
tmpW = ( ( ( quat.getX() * vec.getX() ) + ( quat.getY() * vec.getY() ) ) + ( quat.getZ() * vec.getZ() ) );
|
|
return btVector3(
|
|
( ( ( ( tmpW * quat.getX() ) + ( tmpX * quat.getW() ) ) - ( tmpY * quat.getZ() ) ) + ( tmpZ * quat.getY() ) ),
|
|
( ( ( ( tmpW * quat.getY() ) + ( tmpY * quat.getW() ) ) - ( tmpZ * quat.getX() ) ) + ( tmpX * quat.getZ() ) ),
|
|
( ( ( ( tmpW * quat.getZ() ) + ( tmpZ * quat.getW() ) ) - ( tmpX * quat.getY() ) ) + ( tmpY * quat.getX() ) )
|
|
);
|
|
}
|
|
|
|
void BenchmarkDemo::createTowerCircle(const btVector3& offsetPosition,int stackSize,int rotSize,const btVector3& boxSize)
|
|
{
|
|
|
|
btBoxShape* blockShape = new btBoxShape(btVector3(boxSize[0]-COLLISION_RADIUS,boxSize[1]-COLLISION_RADIUS,boxSize[2]-COLLISION_RADIUS));
|
|
|
|
btTransform trans;
|
|
trans.setIdentity();
|
|
|
|
float mass = 1.f;
|
|
btVector3 localInertia(0,0,0);
|
|
blockShape->calculateLocalInertia(mass,localInertia);
|
|
|
|
|
|
float radius = 1.3f * rotSize * boxSize[0] / SIMD_PI;
|
|
|
|
// create active boxes
|
|
btQuaternion rotY(0,1,0,0);
|
|
float posY = boxSize[1];
|
|
|
|
for(int i=0;i<stackSize;i++) {
|
|
for(int j=0;j<rotSize;j++) {
|
|
|
|
|
|
trans.setOrigin(offsetPosition+ rotate(rotY,btVector3(0.0f , posY, radius)));
|
|
trans.setRotation(rotY);
|
|
localCreateRigidBody(mass,trans,blockShape);
|
|
|
|
rotY *= btQuaternion(btVector3(0,1,0),SIMD_PI/(rotSize*btScalar(0.5)));
|
|
}
|
|
|
|
posY += boxSize[1] * 2.0f;
|
|
rotY *= btQuaternion(btVector3(0,1,0),SIMD_PI/(float)rotSize);
|
|
}
|
|
|
|
}
|
|
|
|
void BenchmarkDemo::createTest2()
|
|
{
|
|
setCameraDistance(btScalar(50.));
|
|
const float cubeSize = 1.0f;
|
|
|
|
createPyramid(btVector3(-20.0f,0.0f,0.0f),12,btVector3(cubeSize,cubeSize,cubeSize));
|
|
createWall(btVector3(-2.0f,0.0f,0.0f),12,btVector3(cubeSize,cubeSize,cubeSize));
|
|
createWall(btVector3(4.0f,0.0f,0.0f),12,btVector3(cubeSize,cubeSize,cubeSize));
|
|
createWall(btVector3(10.0f,0.0f,0.0f),12,btVector3(cubeSize,cubeSize,cubeSize));
|
|
createTowerCircle(btVector3(25.0f,0.0f,0.0f),8,24,btVector3(cubeSize,cubeSize,cubeSize));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Enrico: Shouldn't these three variables be real constants and not defines?
|
|
|
|
#ifndef M_PI
|
|
#define M_PI btScalar(3.14159265358979323846)
|
|
#endif
|
|
|
|
#ifndef M_PI_2
|
|
#define M_PI_2 btScalar(1.57079632679489661923)
|
|
#endif
|
|
|
|
#ifndef M_PI_4
|
|
#define M_PI_4 btScalar(0.785398163397448309616)
|
|
#endif
|
|
|
|
class RagDoll
|
|
{
|
|
enum
|
|
{
|
|
BODYPART_PELVIS = 0,
|
|
BODYPART_SPINE,
|
|
BODYPART_HEAD,
|
|
|
|
BODYPART_LEFT_UPPER_LEG,
|
|
BODYPART_LEFT_LOWER_LEG,
|
|
|
|
BODYPART_RIGHT_UPPER_LEG,
|
|
BODYPART_RIGHT_LOWER_LEG,
|
|
|
|
BODYPART_LEFT_UPPER_ARM,
|
|
BODYPART_LEFT_LOWER_ARM,
|
|
|
|
BODYPART_RIGHT_UPPER_ARM,
|
|
BODYPART_RIGHT_LOWER_ARM,
|
|
|
|
BODYPART_COUNT
|
|
};
|
|
|
|
enum
|
|
{
|
|
JOINT_PELVIS_SPINE = 0,
|
|
JOINT_SPINE_HEAD,
|
|
|
|
JOINT_LEFT_HIP,
|
|
JOINT_LEFT_KNEE,
|
|
|
|
JOINT_RIGHT_HIP,
|
|
JOINT_RIGHT_KNEE,
|
|
|
|
JOINT_LEFT_SHOULDER,
|
|
JOINT_LEFT_ELBOW,
|
|
|
|
JOINT_RIGHT_SHOULDER,
|
|
JOINT_RIGHT_ELBOW,
|
|
|
|
JOINT_COUNT
|
|
};
|
|
|
|
btDynamicsWorld* m_ownerWorld;
|
|
btCollisionShape* m_shapes[BODYPART_COUNT];
|
|
btRigidBody* m_bodies[BODYPART_COUNT];
|
|
btTypedConstraint* m_joints[JOINT_COUNT];
|
|
|
|
btRigidBody* localCreateRigidBody (btScalar mass, const btTransform& startTransform, btCollisionShape* shape)
|
|
{
|
|
bool isDynamic = (mass != 0.f);
|
|
|
|
btVector3 localInertia(0,0,0);
|
|
if (isDynamic)
|
|
shape->calculateLocalInertia(mass,localInertia);
|
|
|
|
btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform);
|
|
|
|
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,shape,localInertia);
|
|
btRigidBody* body = new btRigidBody(rbInfo);
|
|
|
|
m_ownerWorld->addRigidBody(body);
|
|
|
|
return body;
|
|
}
|
|
|
|
public:
|
|
RagDoll (btDynamicsWorld* ownerWorld, const btVector3& positionOffset,btScalar scale)
|
|
: m_ownerWorld (ownerWorld)
|
|
{
|
|
// Setup the geometry
|
|
m_shapes[BODYPART_PELVIS] = new btCapsuleShape(btScalar(0.15)*scale, btScalar(0.20)*scale);
|
|
m_shapes[BODYPART_SPINE] = new btCapsuleShape(btScalar(0.15)*scale, btScalar(0.28)*scale);
|
|
m_shapes[BODYPART_HEAD] = new btCapsuleShape(btScalar(0.10)*scale, btScalar(0.05)*scale);
|
|
m_shapes[BODYPART_LEFT_UPPER_LEG] = new btCapsuleShape(btScalar(0.07)*scale, btScalar(0.45)*scale);
|
|
m_shapes[BODYPART_LEFT_LOWER_LEG] = new btCapsuleShape(btScalar(0.05)*scale, btScalar(0.37)*scale);
|
|
m_shapes[BODYPART_RIGHT_UPPER_LEG] = new btCapsuleShape(btScalar(0.07)*scale, btScalar(0.45)*scale);
|
|
m_shapes[BODYPART_RIGHT_LOWER_LEG] = new btCapsuleShape(btScalar(0.05)*scale, btScalar(0.37)*scale);
|
|
m_shapes[BODYPART_LEFT_UPPER_ARM] = new btCapsuleShape(btScalar(0.05)*scale, btScalar(0.33)*scale);
|
|
m_shapes[BODYPART_LEFT_LOWER_ARM] = new btCapsuleShape(btScalar(0.04)*scale, btScalar(0.25)*scale);
|
|
m_shapes[BODYPART_RIGHT_UPPER_ARM] = new btCapsuleShape(btScalar(0.05)*scale, btScalar(0.33)*scale);
|
|
m_shapes[BODYPART_RIGHT_LOWER_ARM] = new btCapsuleShape(btScalar(0.04)*scale, btScalar(0.25)*scale);
|
|
|
|
// Setup all the rigid bodies
|
|
btTransform offset; offset.setIdentity();
|
|
offset.setOrigin(positionOffset);
|
|
|
|
btTransform transform;
|
|
transform.setIdentity();
|
|
transform.setOrigin(scale*btVector3(btScalar(0.), btScalar(1.), btScalar(0.)));
|
|
m_bodies[BODYPART_PELVIS] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_PELVIS]);
|
|
|
|
transform.setIdentity();
|
|
transform.setOrigin(scale*btVector3(btScalar(0.), btScalar(1.2), btScalar(0.)));
|
|
m_bodies[BODYPART_SPINE] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_SPINE]);
|
|
|
|
transform.setIdentity();
|
|
transform.setOrigin(scale*btVector3(btScalar(0.), btScalar(1.6), btScalar(0.)));
|
|
m_bodies[BODYPART_HEAD] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_HEAD]);
|
|
|
|
transform.setIdentity();
|
|
transform.setOrigin(scale*btVector3(btScalar(-0.18), btScalar(0.65), btScalar(0.)));
|
|
m_bodies[BODYPART_LEFT_UPPER_LEG] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_LEFT_UPPER_LEG]);
|
|
|
|
transform.setIdentity();
|
|
transform.setOrigin(scale*btVector3(btScalar(-0.18), btScalar(0.2), btScalar(0.)));
|
|
m_bodies[BODYPART_LEFT_LOWER_LEG] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_LEFT_LOWER_LEG]);
|
|
|
|
transform.setIdentity();
|
|
transform.setOrigin(scale*btVector3(btScalar(0.18), btScalar(0.65), btScalar(0.)));
|
|
m_bodies[BODYPART_RIGHT_UPPER_LEG] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_RIGHT_UPPER_LEG]);
|
|
|
|
transform.setIdentity();
|
|
transform.setOrigin(scale*btVector3(btScalar(0.18), btScalar(0.2), btScalar(0.)));
|
|
m_bodies[BODYPART_RIGHT_LOWER_LEG] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_RIGHT_LOWER_LEG]);
|
|
|
|
transform.setIdentity();
|
|
transform.setOrigin(scale*btVector3(btScalar(-0.35), btScalar(1.45), btScalar(0.)));
|
|
transform.getBasis().setEulerZYX(0,0,M_PI_2);
|
|
m_bodies[BODYPART_LEFT_UPPER_ARM] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_LEFT_UPPER_ARM]);
|
|
|
|
transform.setIdentity();
|
|
transform.setOrigin(scale*btVector3(btScalar(-0.7), btScalar(1.45), btScalar(0.)));
|
|
transform.getBasis().setEulerZYX(0,0,M_PI_2);
|
|
m_bodies[BODYPART_LEFT_LOWER_ARM] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_LEFT_LOWER_ARM]);
|
|
|
|
transform.setIdentity();
|
|
transform.setOrigin(scale*btVector3(btScalar(0.35), btScalar(1.45), btScalar(0.)));
|
|
transform.getBasis().setEulerZYX(0,0,-M_PI_2);
|
|
m_bodies[BODYPART_RIGHT_UPPER_ARM] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_RIGHT_UPPER_ARM]);
|
|
|
|
transform.setIdentity();
|
|
transform.setOrigin(scale*btVector3(btScalar(0.7), btScalar(1.45), btScalar(0.)));
|
|
transform.getBasis().setEulerZYX(0,0,-M_PI_2);
|
|
m_bodies[BODYPART_RIGHT_LOWER_ARM] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_RIGHT_LOWER_ARM]);
|
|
|
|
// Setup some damping on the m_bodies
|
|
for (int i = 0; i < BODYPART_COUNT; ++i)
|
|
{
|
|
m_bodies[i]->setDamping(btScalar(0.05), btScalar(0.85));
|
|
m_bodies[i]->setDeactivationTime(btScalar(0.8));
|
|
m_bodies[i]->setSleepingThresholds(btScalar(1.6), btScalar(2.5));
|
|
}
|
|
|
|
// Now setup the constraints
|
|
btHingeConstraint* hingeC;
|
|
btConeTwistConstraint* coneC;
|
|
|
|
btTransform localA, localB;
|
|
|
|
localA.setIdentity(); localB.setIdentity();
|
|
localA.getBasis().setEulerZYX(0,M_PI_2,0); localA.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.15), btScalar(0.)));
|
|
localB.getBasis().setEulerZYX(0,M_PI_2,0); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.15), btScalar(0.)));
|
|
hingeC = new btHingeConstraint(*m_bodies[BODYPART_PELVIS], *m_bodies[BODYPART_SPINE], localA, localB);
|
|
hingeC->setLimit(btScalar(-M_PI_4), btScalar(M_PI_2));
|
|
m_joints[JOINT_PELVIS_SPINE] = hingeC;
|
|
m_ownerWorld->addConstraint(m_joints[JOINT_PELVIS_SPINE], true);
|
|
|
|
|
|
localA.setIdentity(); localB.setIdentity();
|
|
localA.getBasis().setEulerZYX(0,0,M_PI_2); localA.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.30), btScalar(0.)));
|
|
localB.getBasis().setEulerZYX(0,0,M_PI_2); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.14), btScalar(0.)));
|
|
coneC = new btConeTwistConstraint(*m_bodies[BODYPART_SPINE], *m_bodies[BODYPART_HEAD], localA, localB);
|
|
coneC->setLimit(M_PI_4, M_PI_4, M_PI_2);
|
|
m_joints[JOINT_SPINE_HEAD] = coneC;
|
|
m_ownerWorld->addConstraint(m_joints[JOINT_SPINE_HEAD], true);
|
|
|
|
|
|
localA.setIdentity(); localB.setIdentity();
|
|
localA.getBasis().setEulerZYX(0,0,-M_PI_4*5); localA.setOrigin(scale*btVector3(btScalar(-0.18), btScalar(-0.10), btScalar(0.)));
|
|
localB.getBasis().setEulerZYX(0,0,-M_PI_4*5); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.225), btScalar(0.)));
|
|
coneC = new btConeTwistConstraint(*m_bodies[BODYPART_PELVIS], *m_bodies[BODYPART_LEFT_UPPER_LEG], localA, localB);
|
|
coneC->setLimit(M_PI_4, M_PI_4, 0);
|
|
m_joints[JOINT_LEFT_HIP] = coneC;
|
|
m_ownerWorld->addConstraint(m_joints[JOINT_LEFT_HIP], true);
|
|
|
|
localA.setIdentity(); localB.setIdentity();
|
|
localA.getBasis().setEulerZYX(0,M_PI_2,0); localA.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.225), btScalar(0.)));
|
|
localB.getBasis().setEulerZYX(0,M_PI_2,0); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.185), btScalar(0.)));
|
|
hingeC = new btHingeConstraint(*m_bodies[BODYPART_LEFT_UPPER_LEG], *m_bodies[BODYPART_LEFT_LOWER_LEG], localA, localB);
|
|
hingeC->setLimit(btScalar(0), btScalar(M_PI_2));
|
|
m_joints[JOINT_LEFT_KNEE] = hingeC;
|
|
m_ownerWorld->addConstraint(m_joints[JOINT_LEFT_KNEE], true);
|
|
|
|
|
|
localA.setIdentity(); localB.setIdentity();
|
|
localA.getBasis().setEulerZYX(0,0,M_PI_4); localA.setOrigin(scale*btVector3(btScalar(0.18), btScalar(-0.10), btScalar(0.)));
|
|
localB.getBasis().setEulerZYX(0,0,M_PI_4); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.225), btScalar(0.)));
|
|
coneC = new btConeTwistConstraint(*m_bodies[BODYPART_PELVIS], *m_bodies[BODYPART_RIGHT_UPPER_LEG], localA, localB);
|
|
coneC->setLimit(M_PI_4, M_PI_4, 0);
|
|
m_joints[JOINT_RIGHT_HIP] = coneC;
|
|
m_ownerWorld->addConstraint(m_joints[JOINT_RIGHT_HIP], true);
|
|
|
|
localA.setIdentity(); localB.setIdentity();
|
|
localA.getBasis().setEulerZYX(0,M_PI_2,0); localA.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.225), btScalar(0.)));
|
|
localB.getBasis().setEulerZYX(0,M_PI_2,0); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.185), btScalar(0.)));
|
|
hingeC = new btHingeConstraint(*m_bodies[BODYPART_RIGHT_UPPER_LEG], *m_bodies[BODYPART_RIGHT_LOWER_LEG], localA, localB);
|
|
hingeC->setLimit(btScalar(0), btScalar(M_PI_2));
|
|
m_joints[JOINT_RIGHT_KNEE] = hingeC;
|
|
m_ownerWorld->addConstraint(m_joints[JOINT_RIGHT_KNEE], true);
|
|
|
|
|
|
localA.setIdentity(); localB.setIdentity();
|
|
localA.getBasis().setEulerZYX(0,0,M_PI); localA.setOrigin(scale*btVector3(btScalar(-0.2), btScalar(0.15), btScalar(0.)));
|
|
localB.getBasis().setEulerZYX(0,0,M_PI_2); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.18), btScalar(0.)));
|
|
coneC = new btConeTwistConstraint(*m_bodies[BODYPART_SPINE], *m_bodies[BODYPART_LEFT_UPPER_ARM], localA, localB);
|
|
coneC->setLimit(M_PI_2, M_PI_2, 0);
|
|
m_joints[JOINT_LEFT_SHOULDER] = coneC;
|
|
m_ownerWorld->addConstraint(m_joints[JOINT_LEFT_SHOULDER], true);
|
|
|
|
localA.setIdentity(); localB.setIdentity();
|
|
localA.getBasis().setEulerZYX(0,M_PI_2,0); localA.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.18), btScalar(0.)));
|
|
localB.getBasis().setEulerZYX(0,M_PI_2,0); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.14), btScalar(0.)));
|
|
hingeC = new btHingeConstraint(*m_bodies[BODYPART_LEFT_UPPER_ARM], *m_bodies[BODYPART_LEFT_LOWER_ARM], localA, localB);
|
|
hingeC->setLimit(btScalar(-M_PI_2), btScalar(0));
|
|
m_joints[JOINT_LEFT_ELBOW] = hingeC;
|
|
m_ownerWorld->addConstraint(m_joints[JOINT_LEFT_ELBOW], true);
|
|
|
|
|
|
|
|
localA.setIdentity(); localB.setIdentity();
|
|
localA.getBasis().setEulerZYX(0,0,0); localA.setOrigin(scale*btVector3(btScalar(0.2), btScalar(0.15), btScalar(0.)));
|
|
localB.getBasis().setEulerZYX(0,0,M_PI_2); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.18), btScalar(0.)));
|
|
coneC = new btConeTwistConstraint(*m_bodies[BODYPART_SPINE], *m_bodies[BODYPART_RIGHT_UPPER_ARM], localA, localB);
|
|
coneC->setLimit(M_PI_2, M_PI_2, 0);
|
|
m_joints[JOINT_RIGHT_SHOULDER] = coneC;
|
|
m_ownerWorld->addConstraint(m_joints[JOINT_RIGHT_SHOULDER], true);
|
|
|
|
localA.setIdentity(); localB.setIdentity();
|
|
localA.getBasis().setEulerZYX(0,M_PI_2,0); localA.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.18), btScalar(0.)));
|
|
localB.getBasis().setEulerZYX(0,M_PI_2,0); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.14), btScalar(0.)));
|
|
hingeC = new btHingeConstraint(*m_bodies[BODYPART_RIGHT_UPPER_ARM], *m_bodies[BODYPART_RIGHT_LOWER_ARM], localA, localB);
|
|
hingeC->setLimit(btScalar(-M_PI_2), btScalar(0));
|
|
m_joints[JOINT_RIGHT_ELBOW] = hingeC;
|
|
m_ownerWorld->addConstraint(m_joints[JOINT_RIGHT_ELBOW], true);
|
|
}
|
|
|
|
virtual ~RagDoll ()
|
|
{
|
|
int i;
|
|
|
|
// Remove all constraints
|
|
for ( i = 0; i < JOINT_COUNT; ++i)
|
|
{
|
|
m_ownerWorld->removeConstraint(m_joints[i]);
|
|
delete m_joints[i]; m_joints[i] = 0;
|
|
}
|
|
|
|
// Remove all bodies and shapes
|
|
for ( i = 0; i < BODYPART_COUNT; ++i)
|
|
{
|
|
m_ownerWorld->removeRigidBody(m_bodies[i]);
|
|
|
|
delete m_bodies[i]->getMotionState();
|
|
|
|
delete m_bodies[i]; m_bodies[i] = 0;
|
|
delete m_shapes[i]; m_shapes[i] = 0;
|
|
}
|
|
}
|
|
};
|
|
|
|
void BenchmarkDemo::createTest3()
|
|
{
|
|
setCameraDistance(btScalar(50.));
|
|
|
|
int size = 16;
|
|
|
|
float sizeX = 1.f;
|
|
float sizeY = 1.f;
|
|
|
|
//int rc=0;
|
|
|
|
btScalar scale(3.5);
|
|
btVector3 pos(0.0f, sizeY, 0.0f);
|
|
while(size) {
|
|
float offset = -size * (sizeX * 6.0f) * 0.5f;
|
|
for(int i=0;i<size;i++) {
|
|
pos[0] = offset + (float)i * (sizeX * 6.0f);
|
|
|
|
RagDoll* ragDoll = new RagDoll (m_dynamicsWorld,pos,scale);
|
|
m_ragdolls.push_back(ragDoll);
|
|
}
|
|
|
|
offset += sizeX;
|
|
pos[1] += (sizeY * 7.0f);
|
|
pos[2] -= sizeX * 2.0f;
|
|
size--;
|
|
}
|
|
|
|
}
|
|
void BenchmarkDemo::createTest4()
|
|
{
|
|
setCameraDistance(btScalar(50.));
|
|
|
|
int size = 8;
|
|
const float cubeSize = 1.5f;
|
|
float spacing = cubeSize;
|
|
btVector3 pos(0.0f, cubeSize * 2, 0.0f);
|
|
float offset = -size * (cubeSize * 2.0f + spacing) * 0.5f;
|
|
|
|
btConvexHullShape* convexHullShape = new btConvexHullShape();
|
|
|
|
btScalar scaling(1);
|
|
|
|
convexHullShape->setLocalScaling(btVector3(scaling,scaling,scaling));
|
|
|
|
for (int i=0;i<TaruVtxCount;i++)
|
|
{
|
|
btVector3 vtx(TaruVtx[i*3],TaruVtx[i*3+1],TaruVtx[i*3+2]);
|
|
convexHullShape->addPoint(vtx*btScalar(1./scaling));
|
|
}
|
|
|
|
//this will enable polyhedral contact clipping, better quality, slightly slower
|
|
//convexHullShape->initializePolyhedralFeatures();
|
|
|
|
btTransform trans;
|
|
trans.setIdentity();
|
|
|
|
float mass = 1.f;
|
|
btVector3 localInertia(0,0,0);
|
|
convexHullShape->calculateLocalInertia(mass,localInertia);
|
|
|
|
for(int k=0;k<15;k++) {
|
|
for(int j=0;j<size;j++) {
|
|
pos[2] = offset + (float)j * (cubeSize * 2.0f + spacing);
|
|
for(int i=0;i<size;i++) {
|
|
pos[0] = offset + (float)i * (cubeSize * 2.0f + spacing);
|
|
trans.setOrigin(pos);
|
|
localCreateRigidBody(mass,trans,convexHullShape);
|
|
}
|
|
}
|
|
offset -= 0.05f * spacing * (size-1);
|
|
spacing *= 1.01f;
|
|
pos[1] += (cubeSize * 2.0f + spacing);
|
|
}
|
|
}
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// LargeMesh
|
|
|
|
int LandscapeVtxCount[] = {
|
|
Landscape01VtxCount,
|
|
Landscape02VtxCount,
|
|
Landscape03VtxCount,
|
|
Landscape04VtxCount,
|
|
Landscape05VtxCount,
|
|
Landscape06VtxCount,
|
|
Landscape07VtxCount,
|
|
Landscape08VtxCount,
|
|
};
|
|
|
|
int LandscapeIdxCount[] = {
|
|
Landscape01IdxCount,
|
|
Landscape02IdxCount,
|
|
Landscape03IdxCount,
|
|
Landscape04IdxCount,
|
|
Landscape05IdxCount,
|
|
Landscape06IdxCount,
|
|
Landscape07IdxCount,
|
|
Landscape08IdxCount,
|
|
};
|
|
|
|
btScalar *LandscapeVtx[] = {
|
|
Landscape01Vtx,
|
|
Landscape02Vtx,
|
|
Landscape03Vtx,
|
|
Landscape04Vtx,
|
|
Landscape05Vtx,
|
|
Landscape06Vtx,
|
|
Landscape07Vtx,
|
|
Landscape08Vtx,
|
|
};
|
|
|
|
btScalar *LandscapeNml[] = {
|
|
Landscape01Nml,
|
|
Landscape02Nml,
|
|
Landscape03Nml,
|
|
Landscape04Nml,
|
|
Landscape05Nml,
|
|
Landscape06Nml,
|
|
Landscape07Nml,
|
|
Landscape08Nml,
|
|
};
|
|
|
|
btScalar* LandscapeTex[] = {
|
|
Landscape01Tex,
|
|
Landscape02Tex,
|
|
Landscape03Tex,
|
|
Landscape04Tex,
|
|
Landscape05Tex,
|
|
Landscape06Tex,
|
|
Landscape07Tex,
|
|
Landscape08Tex,
|
|
};
|
|
|
|
unsigned short *LandscapeIdx[] = {
|
|
Landscape01Idx,
|
|
Landscape02Idx,
|
|
Landscape03Idx,
|
|
Landscape04Idx,
|
|
Landscape05Idx,
|
|
Landscape06Idx,
|
|
Landscape07Idx,
|
|
Landscape08Idx,
|
|
};
|
|
|
|
void BenchmarkDemo::createLargeMeshBody()
|
|
{
|
|
btTransform trans;
|
|
trans.setIdentity();
|
|
|
|
for(int i=0;i<8;i++) {
|
|
|
|
btTriangleIndexVertexArray* meshInterface = new btTriangleIndexVertexArray();
|
|
btIndexedMesh part;
|
|
|
|
part.m_vertexBase = (const unsigned char*)LandscapeVtx[i];
|
|
part.m_vertexStride = sizeof(btScalar) * 3;
|
|
part.m_numVertices = LandscapeVtxCount[i];
|
|
part.m_triangleIndexBase = (const unsigned char*)LandscapeIdx[i];
|
|
part.m_triangleIndexStride = sizeof( short) * 3;
|
|
part.m_numTriangles = LandscapeIdxCount[i]/3;
|
|
part.m_indexType = PHY_SHORT;
|
|
|
|
meshInterface->addIndexedMesh(part,PHY_SHORT);
|
|
|
|
bool useQuantizedAabbCompression = true;
|
|
btBvhTriangleMeshShape* trimeshShape = new btBvhTriangleMeshShape(meshInterface,useQuantizedAabbCompression);
|
|
btVector3 localInertia(0,0,0);
|
|
trans.setOrigin(btVector3(0,-25,0));
|
|
|
|
btRigidBody* body = localCreateRigidBody(0,trans,trimeshShape);
|
|
body->setFriction (btScalar(0.9));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
void BenchmarkDemo::createTest5()
|
|
{
|
|
setCameraDistance(btScalar(250.));
|
|
btVector3 boxSize(1.5f,1.5f,1.5f);
|
|
float boxMass = 1.0f;
|
|
float sphereRadius = 1.5f;
|
|
float sphereMass = 1.0f;
|
|
float capsuleHalf = 2.0f;
|
|
float capsuleRadius = 1.0f;
|
|
float capsuleMass = 1.0f;
|
|
|
|
{
|
|
int size = 10;
|
|
int height = 10;
|
|
|
|
const float cubeSize = boxSize[0];
|
|
float spacing = 2.0f;
|
|
btVector3 pos(0.0f, 20.0f, 0.0f);
|
|
float offset = -size * (cubeSize * 2.0f + spacing) * 0.5f;
|
|
|
|
int numBodies = 0;
|
|
|
|
for(int k=0;k<height;k++) {
|
|
for(int j=0;j<size;j++) {
|
|
pos[2] = offset + (float)j * (cubeSize * 2.0f + spacing);
|
|
for(int i=0;i<size;i++) {
|
|
pos[0] = offset + (float)i * (cubeSize * 2.0f + spacing);
|
|
btVector3 bpos = btVector3(0,25,0) + btVector3(5.0f,1.0f,5.0f)*pos;
|
|
int idx = rand() % 9;
|
|
btTransform trans;
|
|
trans.setIdentity();
|
|
trans.setOrigin(bpos);
|
|
|
|
switch(idx) {
|
|
case 0:case 1:case 2:
|
|
{
|
|
float r = 0.5f * (idx+1);
|
|
btBoxShape* boxShape = new btBoxShape(boxSize*r);
|
|
localCreateRigidBody(boxMass*r,trans,boxShape);
|
|
}
|
|
break;
|
|
|
|
case 3:case 4:case 5:
|
|
{
|
|
float r = 0.5f * (idx-3+1);
|
|
btSphereShape* sphereShape = new btSphereShape(sphereRadius*r);
|
|
localCreateRigidBody(sphereMass*r,trans,sphereShape);
|
|
}
|
|
break;
|
|
|
|
case 6:case 7:case 8:
|
|
{
|
|
float r = 0.5f * (idx-6+1);
|
|
btCapsuleShape* capsuleShape = new btCapsuleShape(capsuleRadius*r,capsuleHalf*r);
|
|
localCreateRigidBody(capsuleMass*r,trans,capsuleShape);
|
|
}
|
|
break;
|
|
}
|
|
|
|
numBodies++;
|
|
}
|
|
}
|
|
offset -= 0.05f * spacing * (size-1);
|
|
spacing *= 1.1f;
|
|
pos[1] += (cubeSize * 2.0f + spacing);
|
|
}
|
|
}
|
|
|
|
createLargeMeshBody();
|
|
}
|
|
void BenchmarkDemo::createTest6()
|
|
{
|
|
setCameraDistance(btScalar(250.));
|
|
|
|
btVector3 boxSize(1.5f,1.5f,1.5f);
|
|
|
|
btConvexHullShape* convexHullShape = new btConvexHullShape();
|
|
|
|
for (int i=0;i<TaruVtxCount;i++)
|
|
{
|
|
btVector3 vtx(TaruVtx[i*3],TaruVtx[i*3+1],TaruVtx[i*3+2]);
|
|
convexHullShape->addPoint(vtx);
|
|
}
|
|
|
|
btTransform trans;
|
|
trans.setIdentity();
|
|
|
|
float mass = 1.f;
|
|
btVector3 localInertia(0,0,0);
|
|
convexHullShape->calculateLocalInertia(mass,localInertia);
|
|
|
|
|
|
{
|
|
int size = 10;
|
|
int height = 10;
|
|
|
|
const float cubeSize = boxSize[0];
|
|
float spacing = 2.0f;
|
|
btVector3 pos(0.0f, 20.0f, 0.0f);
|
|
float offset = -size * (cubeSize * 2.0f + spacing) * 0.5f;
|
|
|
|
|
|
for(int k=0;k<height;k++) {
|
|
for(int j=0;j<size;j++) {
|
|
pos[2] = offset + (float)j * (cubeSize * 2.0f + spacing);
|
|
for(int i=0;i<size;i++) {
|
|
pos[0] = offset + (float)i * (cubeSize * 2.0f + spacing);
|
|
btVector3 bpos = btVector3(0,25,0) + btVector3(5.0f,1.0f,5.0f)*pos;
|
|
trans.setOrigin(bpos);
|
|
|
|
localCreateRigidBody(mass,trans,convexHullShape);
|
|
}
|
|
}
|
|
offset -= 0.05f * spacing * (size-1);
|
|
spacing *= 1.1f;
|
|
pos[1] += (cubeSize * 2.0f + spacing);
|
|
}
|
|
}
|
|
|
|
|
|
createLargeMeshBody();
|
|
}
|
|
|
|
|
|
|
|
|
|
void BenchmarkDemo::initRays()
|
|
{
|
|
raycastBar = btRaycastBar2 (2500.0, 0,50.0);
|
|
}
|
|
|
|
void BenchmarkDemo::castRays()
|
|
{
|
|
raycastBar.cast (m_dynamicsWorld);
|
|
}
|
|
|
|
void BenchmarkDemo::createTest7()
|
|
{
|
|
|
|
createTest6();
|
|
setCameraDistance(btScalar(150.));
|
|
initRays();
|
|
}
|
|
|
|
void BenchmarkDemo::exitPhysics()
|
|
{
|
|
int i;
|
|
|
|
for (i=0;i<m_ragdolls.size();i++)
|
|
{
|
|
RagDoll* doll = m_ragdolls[i];
|
|
delete doll;
|
|
}
|
|
m_ragdolls.clear();
|
|
|
|
//cleanup in the reverse order of creation/initialization
|
|
if (m_dynamicsWorld)
|
|
{
|
|
//remove the rigidbodies from the dynamics world and delete them
|
|
for (i=m_dynamicsWorld->getNumCollisionObjects()-1; i>=0 ;i--)
|
|
{
|
|
btCollisionObject* obj = m_dynamicsWorld->getCollisionObjectArray()[i];
|
|
btRigidBody* body = btRigidBody::upcast(obj);
|
|
if (body && body->getMotionState())
|
|
{
|
|
delete body->getMotionState();
|
|
}
|
|
m_dynamicsWorld->removeCollisionObject( obj );
|
|
delete obj;
|
|
}
|
|
}
|
|
|
|
//delete collision shapes
|
|
for (int j=0;j<m_collisionShapes.size();j++)
|
|
{
|
|
btCollisionShape* shape = m_collisionShapes[j];
|
|
delete shape;
|
|
}
|
|
m_collisionShapes.clear();
|
|
|
|
//delete dynamics world
|
|
delete m_dynamicsWorld;
|
|
m_dynamicsWorld=0;
|
|
|
|
//delete solver
|
|
delete m_solver;
|
|
m_solver=0;
|
|
|
|
//delete broadphase
|
|
delete m_overlappingPairCache;
|
|
m_overlappingPairCache=0;
|
|
|
|
//delete dispatcher
|
|
delete m_dispatcher;
|
|
m_dispatcher=0;
|
|
|
|
delete m_collisionConfiguration;
|
|
m_collisionConfiguration=0;
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef USE_GRAPHICAL_BENCHMARK
|
|
|
|
btRigidBody* DemoApplication::localCreateRigidBody(float mass, const btTransform& startTransform,btCollisionShape* shape)
|
|
{
|
|
btAssert((!shape || shape->getShapeType() != INVALID_SHAPE_PROXYTYPE));
|
|
|
|
//rigidbody is dynamic if and only if mass is non zero, otherwise static
|
|
bool isDynamic = (mass != 0.f);
|
|
|
|
btVector3 localInertia(0,0,0);
|
|
if (isDynamic)
|
|
shape->calculateLocalInertia(mass,localInertia);
|
|
|
|
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
|
|
|
|
btRigidBody* body = new btRigidBody(mass,0,shape,localInertia);
|
|
body->setWorldTransform(startTransform);
|
|
body->setContactProcessingThreshold(m_defaultContactProcessingThreshold);
|
|
m_dynamicsWorld->addRigidBody(body);
|
|
|
|
return body;
|
|
}
|
|
#endif //USE_GRAPHICAL_BENCHMARK
|
|
|