699 lines
25 KiB
C++
699 lines
25 KiB
C++
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
/*
|
|
Voronoi fracture and shatter code and demo copyright (c) 2011 Alain Ducharme
|
|
- Reset scene (press spacebar) to generate new random voronoi shattered cuboids
|
|
- Check console for total time required to: compute and mesh all 3D shards, calculate volumes and centers of mass and create rigid bodies
|
|
- Modify VORONOIPOINTS define below to change number of potential voronoi shards
|
|
- Note that demo's visual cracks between voronoi shards are NOT present in the internally generated voronoi mesh!
|
|
*/
|
|
|
|
//Number of random voronoi points to generate for shattering
|
|
#define VORONOIPOINTS 100
|
|
|
|
//maximum number of objects (and allow user to shoot additional boxes)
|
|
#define MAX_PROXIES (2048)
|
|
#define BREAKING_THRESHOLD 2
|
|
#define CONVEX_MARGIN 0.04
|
|
|
|
#include "VoronoiFractureDemo.h"
|
|
#include "GlutStuff.h"
|
|
///btBulletDynamicsCommon.h is the main Bullet include file, contains most common include files.
|
|
#include "btBulletDynamicsCommon.h"
|
|
|
|
#include <stdio.h> //printf debugging
|
|
|
|
#include "GLDebugDrawer.h"
|
|
static GLDebugDrawer sDebugDraw;
|
|
static bool useGenericConstraint = false;
|
|
|
|
|
|
void VoronoiFractureDemo::attachFixedConstraints()
|
|
{
|
|
btAlignedObjectArray<btRigidBody*> bodies;
|
|
|
|
int numManifolds = getDynamicsWorld()->getDispatcher()->getNumManifolds();
|
|
|
|
for (int i=0;i<numManifolds;i++)
|
|
{
|
|
btPersistentManifold* manifold = getDynamicsWorld()->getDispatcher()->getManifoldByIndexInternal(i);
|
|
if (!manifold->getNumContacts())
|
|
continue;
|
|
|
|
btScalar minDist = 1e30f;
|
|
int minIndex = -1;
|
|
for (int v=0;v<manifold->getNumContacts();v++)
|
|
{
|
|
if (minDist >manifold->getContactPoint(v).getDistance())
|
|
{
|
|
minDist = manifold->getContactPoint(v).getDistance();
|
|
minIndex = v;
|
|
}
|
|
}
|
|
if (minDist>0.)
|
|
continue;
|
|
|
|
btCollisionObject* colObj0 = (btCollisionObject*)manifold->getBody0();
|
|
btCollisionObject* colObj1 = (btCollisionObject*)manifold->getBody1();
|
|
// int tag0 = (colObj0)->getIslandTag();
|
|
// int tag1 = (colObj1)->getIslandTag();
|
|
btRigidBody* body0 = btRigidBody::upcast(colObj0);
|
|
btRigidBody* body1 = btRigidBody::upcast(colObj1);
|
|
if (bodies.findLinearSearch(body0)==bodies.size())
|
|
bodies.push_back(body0);
|
|
if (bodies.findLinearSearch(body1)==bodies.size())
|
|
bodies.push_back(body1);
|
|
|
|
if (body0 && body1)
|
|
{
|
|
if (!colObj0->isStaticOrKinematicObject() && !colObj1->isStaticOrKinematicObject())
|
|
{
|
|
if (body0->checkCollideWithOverride(body1))
|
|
{
|
|
{
|
|
btTransform trA,trB;
|
|
trA.setIdentity();
|
|
trB.setIdentity();
|
|
btVector3 contactPosWorld = manifold->getContactPoint(minIndex).m_positionWorldOnA;
|
|
btTransform globalFrame;
|
|
globalFrame.setIdentity();
|
|
globalFrame.setOrigin(contactPosWorld);
|
|
|
|
trA = body0->getWorldTransform().inverse()*globalFrame;
|
|
trB = body1->getWorldTransform().inverse()*globalFrame;
|
|
float totalMass = 1.f/body0->getInvMass() + 1.f/body1->getInvMass();
|
|
|
|
|
|
if (useGenericConstraint)
|
|
{
|
|
btGeneric6DofConstraint* dof6 = new btGeneric6DofConstraint(*body0,*body1,trA,trB,true);
|
|
dof6->setOverrideNumSolverIterations(30);
|
|
|
|
|
|
dof6->setBreakingImpulseThreshold(BREAKING_THRESHOLD*totalMass);
|
|
|
|
for (int i=0;i<6;i++)
|
|
dof6->setLimit(i,0,0);
|
|
getDynamicsWorld()->addConstraint(dof6,true);
|
|
|
|
} else
|
|
{
|
|
btFixedConstraint* fixed = new btFixedConstraint(*body0,*body1,trA,trB);
|
|
fixed->setBreakingImpulseThreshold(BREAKING_THRESHOLD*totalMass);
|
|
fixed ->setOverrideNumSolverIterations(30);
|
|
getDynamicsWorld()->addConstraint(fixed,true);
|
|
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
for (int i=0;i<bodies.size();i++)
|
|
{
|
|
getDynamicsWorld()->removeRigidBody(bodies[i]);
|
|
getDynamicsWorld()->addRigidBody(bodies[i]);
|
|
}
|
|
}
|
|
|
|
void VoronoiFractureDemo::keyboardCallback(unsigned char key, int x, int y)
|
|
{
|
|
if (key == 'g')
|
|
{
|
|
attachFixedConstraints();
|
|
}else
|
|
{
|
|
PlatformDemoApplication::keyboardCallback(key,x,y);
|
|
}
|
|
}
|
|
|
|
|
|
void VoronoiFractureDemo::getVerticesInsidePlanes(const btAlignedObjectArray<btVector3>& planes, btAlignedObjectArray<btVector3>& verticesOut, std::set<int>& planeIndicesOut)
|
|
{
|
|
// Based on btGeometryUtil.cpp (Gino van den Bergen / Erwin Coumans)
|
|
verticesOut.resize(0);
|
|
planeIndicesOut.clear();
|
|
const int numPlanes = planes.size();
|
|
int i, j, k, l;
|
|
for (i=0;i<numPlanes;i++)
|
|
{
|
|
const btVector3& N1 = planes[i];
|
|
for (j=i+1;j<numPlanes;j++)
|
|
{
|
|
const btVector3& N2 = planes[j];
|
|
btVector3 n1n2 = N1.cross(N2);
|
|
if (n1n2.length2() > btScalar(0.0001))
|
|
{
|
|
for (k=j+1;k<numPlanes;k++)
|
|
{
|
|
const btVector3& N3 = planes[k];
|
|
btVector3 n2n3 = N2.cross(N3);
|
|
btVector3 n3n1 = N3.cross(N1);
|
|
if ((n2n3.length2() > btScalar(0.0001)) && (n3n1.length2() > btScalar(0.0001) ))
|
|
{
|
|
btScalar quotient = (N1.dot(n2n3));
|
|
if (btFabs(quotient) > btScalar(0.0001))
|
|
{
|
|
btVector3 potentialVertex = (n2n3 * N1[3] + n3n1 * N2[3] + n1n2 * N3[3]) * (btScalar(-1.) / quotient);
|
|
for (l=0; l<numPlanes; l++)
|
|
{
|
|
const btVector3& NP = planes[l];
|
|
if (btScalar(NP.dot(potentialVertex))+btScalar(NP[3]) > btScalar(0.000001))
|
|
break;
|
|
}
|
|
if (l == numPlanes)
|
|
{
|
|
// vertex (three plane intersection) inside all planes
|
|
verticesOut.push_back(potentialVertex);
|
|
planeIndicesOut.insert(i);
|
|
planeIndicesOut.insert(j);
|
|
planeIndicesOut.insert(k);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static btVector3 curVoronoiPoint;
|
|
|
|
struct pointCmp
|
|
{
|
|
bool operator()(const btVector3& p1, const btVector3& p2) const
|
|
{
|
|
float v1 = (p1-curVoronoiPoint).length2();
|
|
float v2 = (p2-curVoronoiPoint).length2();
|
|
bool result0 = v1 < v2;
|
|
//bool result1 = ((btScalar)(p1-curVoronoiPoint).length2()) < ((btScalar)(p2-curVoronoiPoint).length2());
|
|
//apparently result0 is not always result1, because extended precision used in registered is different from precision when values are stored in memory
|
|
return result0;
|
|
}
|
|
};
|
|
|
|
void VoronoiFractureDemo::voronoiBBShatter(const btAlignedObjectArray<btVector3>& points, const btVector3& bbmin, const btVector3& bbmax, const btQuaternion& bbq, const btVector3& bbt, btScalar matDensity) {
|
|
// points define voronoi cells in world space (avoid duplicates)
|
|
// bbmin & bbmax = bounding box min and max in local space
|
|
// bbq & bbt = bounding box quaternion rotation and translation
|
|
// matDensity = Material density for voronoi shard mass calculation
|
|
btVector3 bbvx = quatRotate(bbq, btVector3(1.0, 0.0, 0.0));
|
|
btVector3 bbvy = quatRotate(bbq, btVector3(0.0, 1.0, 0.0));
|
|
btVector3 bbvz = quatRotate(bbq, btVector3(0.0, 0.0, 1.0));
|
|
btQuaternion bbiq = bbq.inverse();
|
|
btConvexHullComputer* convexHC = new btConvexHullComputer();
|
|
btAlignedObjectArray<btVector3> vertices;
|
|
btVector3 rbb, nrbb;
|
|
btScalar nlength, maxDistance, distance;
|
|
btAlignedObjectArray<btVector3> sortedVoronoiPoints;
|
|
sortedVoronoiPoints.copyFromArray(points);
|
|
btVector3 normal, plane;
|
|
btAlignedObjectArray<btVector3> planes;
|
|
std::set<int> planeIndices;
|
|
std::set<int>::iterator planeIndicesIter;
|
|
int numplaneIndices;
|
|
int cellnum = 0;
|
|
int i, j, k;
|
|
|
|
int numpoints = points.size();
|
|
for (i=0; i < numpoints ;i++) {
|
|
curVoronoiPoint = points[i];
|
|
btVector3 icp = quatRotate(bbiq, curVoronoiPoint - bbt);
|
|
rbb = icp - bbmax;
|
|
nrbb = bbmin - icp;
|
|
planes.resize(6);
|
|
planes[0] = bbvx; planes[0][3] = rbb.x();
|
|
planes[1] = bbvy; planes[1][3] = rbb.y();
|
|
planes[2] = bbvz; planes[2][3] = rbb.z();
|
|
planes[3] = -bbvx; planes[3][3] = nrbb.x();
|
|
planes[4] = -bbvy; planes[4][3] = nrbb.y();
|
|
planes[5] = -bbvz; planes[5][3] = nrbb.z();
|
|
maxDistance = SIMD_INFINITY;
|
|
sortedVoronoiPoints.heapSort(pointCmp());
|
|
for (j=1; j < numpoints; j++) {
|
|
normal = sortedVoronoiPoints[j] - curVoronoiPoint;
|
|
nlength = normal.length();
|
|
if (nlength > maxDistance)
|
|
break;
|
|
plane = normal.normalized();
|
|
plane[3] = -nlength / btScalar(2.);
|
|
planes.push_back(plane);
|
|
getVerticesInsidePlanes(planes, vertices, planeIndices);
|
|
if (vertices.size() == 0)
|
|
break;
|
|
numplaneIndices = planeIndices.size();
|
|
if (numplaneIndices != planes.size()) {
|
|
planeIndicesIter = planeIndices.begin();
|
|
for (k=0; k < numplaneIndices; k++) {
|
|
if (k != *planeIndicesIter)
|
|
planes[k] = planes[*planeIndicesIter];
|
|
planeIndicesIter++;
|
|
}
|
|
planes.resize(numplaneIndices);
|
|
}
|
|
maxDistance = vertices[0].length();
|
|
for (k=1; k < vertices.size(); k++) {
|
|
distance = vertices[k].length();
|
|
if (maxDistance < distance)
|
|
maxDistance = distance;
|
|
}
|
|
maxDistance *= btScalar(2.);
|
|
}
|
|
if (vertices.size() == 0)
|
|
continue;
|
|
|
|
// Clean-up voronoi convex shard vertices and generate edges & faces
|
|
convexHC->compute(&vertices[0].getX(), sizeof(btVector3), vertices.size(),CONVEX_MARGIN,0.0);
|
|
|
|
// At this point we have a complete 3D voronoi shard mesh contained in convexHC
|
|
|
|
// Calculate volume and center of mass (Stan Melax volume integration)
|
|
int numFaces = convexHC->faces.size();
|
|
int v0, v1, v2; // Triangle vertices
|
|
btScalar volume = btScalar(0.);
|
|
btVector3 com(0., 0., 0.);
|
|
for (j=0; j < numFaces; j++) {
|
|
const btConvexHullComputer::Edge* edge = &convexHC->edges[convexHC->faces[j]];
|
|
v0 = edge->getSourceVertex();
|
|
v1 = edge->getTargetVertex();
|
|
edge = edge->getNextEdgeOfFace();
|
|
v2 = edge->getTargetVertex();
|
|
while (v2 != v0) {
|
|
// Counter-clockwise triangulated voronoi shard mesh faces (v0-v1-v2) and edges here...
|
|
btScalar vol = convexHC->vertices[v0].triple(convexHC->vertices[v1], convexHC->vertices[v2]);
|
|
volume += vol;
|
|
com += vol * (convexHC->vertices[v0] + convexHC->vertices[v1] + convexHC->vertices[v2]);
|
|
edge = edge->getNextEdgeOfFace();
|
|
v1 = v2;
|
|
v2 = edge->getTargetVertex();
|
|
}
|
|
}
|
|
com /= volume * btScalar(4.);
|
|
volume /= btScalar(6.);
|
|
|
|
// Shift all vertices relative to center of mass
|
|
int numVerts = convexHC->vertices.size();
|
|
for (j=0; j < numVerts; j++)
|
|
{
|
|
convexHC->vertices[j] -= com;
|
|
}
|
|
|
|
// Note:
|
|
// At this point convex hulls contained in convexHC should be accurate (line up flush with other pieces, no cracks),
|
|
// ...however Bullet Physics rigid bodies demo visualizations appear to produce some visible cracks.
|
|
// Use the mesh in convexHC for visual display or to perform boolean operations with.
|
|
|
|
// Create Bullet Physics rigid body shards
|
|
btCollisionShape* shardShape = new btConvexHullShape(&(convexHC->vertices[0].getX()), convexHC->vertices.size());
|
|
shardShape->setMargin(CONVEX_MARGIN); // for this demo; note convexHC has optional margin parameter for this
|
|
m_collisionShapes.push_back(shardShape);
|
|
btTransform shardTransform;
|
|
shardTransform.setIdentity();
|
|
shardTransform.setOrigin(curVoronoiPoint + com); // Shard's adjusted location
|
|
btDefaultMotionState* shardMotionState = new btDefaultMotionState(shardTransform);
|
|
btScalar shardMass(volume * matDensity);
|
|
btVector3 shardInertia(0.,0.,0.);
|
|
shardShape->calculateLocalInertia(shardMass, shardInertia);
|
|
btRigidBody::btRigidBodyConstructionInfo shardRBInfo(shardMass, shardMotionState, shardShape, shardInertia);
|
|
btRigidBody* shardBody = new btRigidBody(shardRBInfo);
|
|
m_dynamicsWorld->addRigidBody(shardBody);
|
|
|
|
cellnum ++;
|
|
|
|
}
|
|
printf("Generated %d voronoi btRigidBody shards\n", cellnum);
|
|
}
|
|
|
|
void VoronoiFractureDemo::voronoiConvexHullShatter(const btAlignedObjectArray<btVector3>& points, const btAlignedObjectArray<btVector3>& verts, const btQuaternion& bbq, const btVector3& bbt, btScalar matDensity) {
|
|
// points define voronoi cells in world space (avoid duplicates)
|
|
// verts = source (convex hull) mesh vertices in local space
|
|
// bbq & bbt = source (convex hull) mesh quaternion rotation and translation
|
|
// matDensity = Material density for voronoi shard mass calculation
|
|
btConvexHullComputer* convexHC = new btConvexHullComputer();
|
|
btAlignedObjectArray<btVector3> vertices, chverts;
|
|
btVector3 rbb, nrbb;
|
|
btScalar nlength, maxDistance, distance;
|
|
btAlignedObjectArray<btVector3> sortedVoronoiPoints;
|
|
sortedVoronoiPoints.copyFromArray(points);
|
|
btVector3 normal, plane;
|
|
btAlignedObjectArray<btVector3> planes, convexPlanes;
|
|
std::set<int> planeIndices;
|
|
std::set<int>::iterator planeIndicesIter;
|
|
int numplaneIndices;
|
|
int cellnum = 0;
|
|
int i, j, k;
|
|
|
|
// Convert verts to world space and get convexPlanes
|
|
int numverts = verts.size();
|
|
chverts.resize(verts.size());
|
|
for (i=0; i < numverts ;i++) {
|
|
chverts[i] = quatRotate(bbq, verts[i]) + bbt;
|
|
}
|
|
//btGeometryUtil::getPlaneEquationsFromVertices(chverts, convexPlanes);
|
|
// Using convexHullComputer faster than getPlaneEquationsFromVertices for large meshes...
|
|
convexHC->compute(&chverts[0].getX(), sizeof(btVector3), numverts, 0.0, 0.0);
|
|
int numFaces = convexHC->faces.size();
|
|
int v0, v1, v2; // vertices
|
|
for (i=0; i < numFaces; i++) {
|
|
const btConvexHullComputer::Edge* edge = &convexHC->edges[convexHC->faces[i]];
|
|
v0 = edge->getSourceVertex();
|
|
v1 = edge->getTargetVertex();
|
|
edge = edge->getNextEdgeOfFace();
|
|
v2 = edge->getTargetVertex();
|
|
plane = (convexHC->vertices[v1]-convexHC->vertices[v0]).cross(convexHC->vertices[v2]-convexHC->vertices[v0]).normalize();
|
|
plane[3] = -plane.dot(convexHC->vertices[v0]);
|
|
convexPlanes.push_back(plane);
|
|
}
|
|
const int numconvexPlanes = convexPlanes.size();
|
|
|
|
int numpoints = points.size();
|
|
for (i=0; i < numpoints ;i++) {
|
|
curVoronoiPoint = points[i];
|
|
planes.copyFromArray(convexPlanes);
|
|
for (j=0; j < numconvexPlanes ;j++) {
|
|
planes[j][3] += planes[j].dot(curVoronoiPoint);
|
|
}
|
|
maxDistance = SIMD_INFINITY;
|
|
sortedVoronoiPoints.heapSort(pointCmp());
|
|
for (j=1; j < numpoints; j++) {
|
|
normal = sortedVoronoiPoints[j] - curVoronoiPoint;
|
|
nlength = normal.length();
|
|
if (nlength > maxDistance)
|
|
break;
|
|
plane = normal.normalized();
|
|
plane[3] = -nlength / btScalar(2.);
|
|
planes.push_back(plane);
|
|
getVerticesInsidePlanes(planes, vertices, planeIndices);
|
|
if (vertices.size() == 0)
|
|
break;
|
|
numplaneIndices = planeIndices.size();
|
|
if (numplaneIndices != planes.size()) {
|
|
planeIndicesIter = planeIndices.begin();
|
|
for (k=0; k < numplaneIndices; k++) {
|
|
if (k != *planeIndicesIter)
|
|
planes[k] = planes[*planeIndicesIter];
|
|
planeIndicesIter++;
|
|
}
|
|
planes.resize(numplaneIndices);
|
|
}
|
|
maxDistance = vertices[0].length();
|
|
for (k=1; k < vertices.size(); k++) {
|
|
distance = vertices[k].length();
|
|
if (maxDistance < distance)
|
|
maxDistance = distance;
|
|
}
|
|
maxDistance *= btScalar(2.);
|
|
}
|
|
if (vertices.size() == 0)
|
|
continue;
|
|
|
|
// Clean-up voronoi convex shard vertices and generate edges & faces
|
|
convexHC->compute(&vertices[0].getX(), sizeof(btVector3), vertices.size(),0.0,0.0);
|
|
|
|
// At this point we have a complete 3D voronoi shard mesh contained in convexHC
|
|
|
|
// Calculate volume and center of mass (Stan Melax volume integration)
|
|
numFaces = convexHC->faces.size();
|
|
btScalar volume = btScalar(0.);
|
|
btVector3 com(0., 0., 0.);
|
|
for (j=0; j < numFaces; j++) {
|
|
const btConvexHullComputer::Edge* edge = &convexHC->edges[convexHC->faces[j]];
|
|
v0 = edge->getSourceVertex();
|
|
v1 = edge->getTargetVertex();
|
|
edge = edge->getNextEdgeOfFace();
|
|
v2 = edge->getTargetVertex();
|
|
while (v2 != v0) {
|
|
// Counter-clockwise triangulated voronoi shard mesh faces (v0-v1-v2) and edges here...
|
|
btScalar vol = convexHC->vertices[v0].triple(convexHC->vertices[v1], convexHC->vertices[v2]);
|
|
volume += vol;
|
|
com += vol * (convexHC->vertices[v0] + convexHC->vertices[v1] + convexHC->vertices[v2]);
|
|
edge = edge->getNextEdgeOfFace();
|
|
v1 = v2;
|
|
v2 = edge->getTargetVertex();
|
|
}
|
|
}
|
|
com /= volume * btScalar(4.);
|
|
volume /= btScalar(6.);
|
|
|
|
// Shift all vertices relative to center of mass
|
|
int numVerts = convexHC->vertices.size();
|
|
for (j=0; j < numVerts; j++)
|
|
{
|
|
convexHC->vertices[j] -= com;
|
|
}
|
|
|
|
// Note:
|
|
// At this point convex hulls contained in convexHC should be accurate (line up flush with other pieces, no cracks),
|
|
// ...however Bullet Physics rigid bodies demo visualizations appear to produce some visible cracks.
|
|
// Use the mesh in convexHC for visual display or to perform boolean operations with.
|
|
|
|
// Create Bullet Physics rigid body shards
|
|
btCollisionShape* shardShape = new btConvexHullShape(&(convexHC->vertices[0].getX()), convexHC->vertices.size());
|
|
shardShape->setMargin(CONVEX_MARGIN); // for this demo; note convexHC has optional margin parameter for this
|
|
m_collisionShapes.push_back(shardShape);
|
|
btTransform shardTransform;
|
|
shardTransform.setIdentity();
|
|
shardTransform.setOrigin(curVoronoiPoint + com); // Shard's adjusted location
|
|
btDefaultMotionState* shardMotionState = new btDefaultMotionState(shardTransform);
|
|
btScalar shardMass(volume * matDensity);
|
|
btVector3 shardInertia(0.,0.,0.);
|
|
shardShape->calculateLocalInertia(shardMass, shardInertia);
|
|
btRigidBody::btRigidBodyConstructionInfo shardRBInfo(shardMass, shardMotionState, shardShape, shardInertia);
|
|
btRigidBody* shardBody = new btRigidBody(shardRBInfo);
|
|
m_dynamicsWorld->addRigidBody(shardBody);
|
|
|
|
cellnum ++;
|
|
|
|
}
|
|
printf("Generated %d voronoi btRigidBody shards\n", cellnum);
|
|
}
|
|
|
|
void VoronoiFractureDemo::clientMoveAndDisplay()
|
|
{
|
|
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
|
|
|
//simple dynamics world doesn't handle fixed-time-stepping
|
|
float ms = getDeltaTimeMicroseconds();
|
|
|
|
///step the simulation
|
|
if (m_dynamicsWorld)
|
|
{
|
|
m_dynamicsWorld->stepSimulation(ms / 1000000.f);
|
|
//optional but useful: debug drawing
|
|
m_dynamicsWorld->debugDrawWorld();
|
|
}
|
|
|
|
renderme();
|
|
|
|
glFlush();
|
|
|
|
swapBuffers();
|
|
}
|
|
|
|
|
|
void VoronoiFractureDemo::displayCallback(void) {
|
|
|
|
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
|
|
|
renderme();
|
|
|
|
//optional but useful: debug drawing to detect problems
|
|
if (m_dynamicsWorld)
|
|
m_dynamicsWorld->debugDrawWorld();
|
|
|
|
glFlush();
|
|
swapBuffers();
|
|
}
|
|
|
|
|
|
void VoronoiFractureDemo::initPhysics()
|
|
{
|
|
useGenericConstraint = !useGenericConstraint;
|
|
printf("useGenericConstraint = %d\n", useGenericConstraint);
|
|
|
|
|
|
setTexturing(true);
|
|
setShadows(true);
|
|
|
|
setCameraDistance(btScalar(20.));
|
|
|
|
///collision configuration contains default setup for memory, collision setup
|
|
m_collisionConfiguration = new btDefaultCollisionConfiguration();
|
|
//m_collisionConfiguration->setConvexConvexMultipointIterations();
|
|
|
|
///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded)
|
|
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
|
|
|
|
m_broadphase = new btDbvtBroadphase();
|
|
|
|
///the default constraint solver. For parallel processing you can use a different solver (see Extras/BulletMultiThreaded)
|
|
btSequentialImpulseConstraintSolver* sol = new btSequentialImpulseConstraintSolver;
|
|
m_solver = sol;
|
|
|
|
m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_broadphase,m_solver,m_collisionConfiguration);
|
|
m_dynamicsWorld->getSolverInfo().m_splitImpulse = true;
|
|
m_dynamicsWorld->setDebugDrawer(&sDebugDraw);
|
|
|
|
m_dynamicsWorld->setGravity(btVector3(0,-10,0));
|
|
|
|
///create a few basic rigid bodies
|
|
btCollisionShape* groundShape = new btBoxShape(btVector3(btScalar(50.),btScalar(50.),btScalar(50.)));
|
|
// btCollisionShape* groundShape = new btStaticPlaneShape(btVector3(0,1,0),50);
|
|
|
|
m_collisionShapes.push_back(groundShape);
|
|
|
|
btTransform groundTransform;
|
|
groundTransform.setIdentity();
|
|
groundTransform.setOrigin(btVector3(0,-50,0));
|
|
|
|
//We can also use DemoApplication::localCreateRigidBody, but for clarity it is provided here:
|
|
{
|
|
btScalar mass(0.);
|
|
|
|
//rigidbody is dynamic if and only if mass is non zero, otherwise static
|
|
bool isDynamic = (mass != 0.f);
|
|
|
|
btVector3 localInertia(0,0,0);
|
|
if (isDynamic)
|
|
groundShape->calculateLocalInertia(mass,localInertia);
|
|
|
|
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
|
|
btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform);
|
|
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,groundShape,localInertia);
|
|
btRigidBody* body = new btRigidBody(rbInfo);
|
|
|
|
//add the body to the dynamics world
|
|
m_dynamicsWorld->addRigidBody(body);
|
|
}
|
|
|
|
{
|
|
btCollisionShape* groundShape = new btBoxShape(btVector3(btScalar(10.),btScalar(8.),btScalar(1.)));
|
|
btScalar mass(0.);
|
|
|
|
//rigidbody is dynamic if and only if mass is non zero, otherwise static
|
|
bool isDynamic = (mass != 0.f);
|
|
|
|
btVector3 localInertia(0,0,0);
|
|
if (isDynamic)
|
|
groundShape->calculateLocalInertia(mass,localInertia);
|
|
groundTransform.setOrigin(btVector3(0,0,0));
|
|
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
|
|
btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform);
|
|
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,groundShape,localInertia);
|
|
btRigidBody* body = new btRigidBody(rbInfo);
|
|
|
|
//add the body to the dynamics world
|
|
m_dynamicsWorld->addRigidBody(body);
|
|
}
|
|
|
|
// ==> Voronoi Shatter Basic Demo: Random Cuboid
|
|
|
|
// Random size cuboid (defined by bounding box max and min)
|
|
btVector3 bbmax(btScalar(rand() / btScalar(RAND_MAX)) * 12. +0.5, btScalar(rand() / btScalar(RAND_MAX)) * 1. +0.5, btScalar(rand() / btScalar(RAND_MAX)) * 1. +0.5);
|
|
btVector3 bbmin = -bbmax;
|
|
// Place it 10 units above ground
|
|
btVector3 bbt(0,15,0);
|
|
// Use an arbitrary material density for shards (should be consitent/relative with/to rest of RBs in world)
|
|
btScalar matDensity = 1;
|
|
// Using random rotation
|
|
btQuaternion bbq(btScalar(rand() / btScalar(RAND_MAX)) * 2. -1.,btScalar(rand() / btScalar(RAND_MAX)) * 2. -1.,btScalar(rand() / btScalar(RAND_MAX)) * 2. -1.,btScalar(rand() / btScalar(RAND_MAX)) * 2. -1.);
|
|
bbq.normalize();
|
|
// Generate random points for voronoi cells
|
|
btAlignedObjectArray<btVector3> points;
|
|
btVector3 point;
|
|
btVector3 diff = bbmax - bbmin;
|
|
for (int i=0; i < VORONOIPOINTS; i++) {
|
|
// Place points within box area (points are in world coordinates)
|
|
point = quatRotate(bbq, btVector3(btScalar(rand() / btScalar(RAND_MAX)) * diff.x() -diff.x()/2., btScalar(rand() / btScalar(RAND_MAX)) * diff.y() -diff.y()/2., btScalar(rand() / btScalar(RAND_MAX)) * diff.z() -diff.z()/2.)) + bbt;
|
|
points.push_back(point);
|
|
}
|
|
m_perfmTimer.reset();
|
|
voronoiBBShatter(points, bbmin, bbmax, bbq, bbt, matDensity);
|
|
printf("Total Time: %f seconds\n", m_perfmTimer.getTimeMilliseconds()/1000.);
|
|
|
|
for (int i=m_dynamicsWorld->getNumCollisionObjects()-1; i>=0 ;i--)
|
|
{
|
|
btCollisionObject* obj = m_dynamicsWorld->getCollisionObjectArray()[i];
|
|
obj->getCollisionShape()->setMargin(CONVEX_MARGIN+0.01);
|
|
}
|
|
m_dynamicsWorld->performDiscreteCollisionDetection();
|
|
|
|
for (int i=m_dynamicsWorld->getNumCollisionObjects()-1; i>=0 ;i--)
|
|
{
|
|
btCollisionObject* obj = m_dynamicsWorld->getCollisionObjectArray()[i];
|
|
obj->getCollisionShape()->setMargin(CONVEX_MARGIN);
|
|
}
|
|
|
|
attachFixedConstraints();
|
|
|
|
}
|
|
void VoronoiFractureDemo::clientResetScene()
|
|
{
|
|
exitPhysics();
|
|
initPhysics();
|
|
}
|
|
|
|
|
|
void VoronoiFractureDemo::exitPhysics()
|
|
{
|
|
|
|
//cleanup in the reverse order of creation/initialization
|
|
|
|
int i;
|
|
//remove all constraints
|
|
for (i=m_dynamicsWorld->getNumConstraints()-1;i>=0;i--)
|
|
{
|
|
btTypedConstraint* constraint = m_dynamicsWorld->getConstraint(i);
|
|
m_dynamicsWorld->removeConstraint(constraint);
|
|
delete constraint;
|
|
}
|
|
|
|
//remove the rigidbodies from the dynamics world and delete them
|
|
|
|
for (i=m_dynamicsWorld->getNumCollisionObjects()-1; i>=0 ;i--)
|
|
{
|
|
btCollisionObject* obj = m_dynamicsWorld->getCollisionObjectArray()[i];
|
|
btRigidBody* body = btRigidBody::upcast(obj);
|
|
if (body && body->getMotionState())
|
|
{
|
|
delete body->getMotionState();
|
|
}
|
|
m_dynamicsWorld->removeCollisionObject( obj );
|
|
delete obj;
|
|
}
|
|
|
|
//delete collision shapes
|
|
for (int j=0;j<m_collisionShapes.size();j++)
|
|
{
|
|
btCollisionShape* shape = m_collisionShapes[j];
|
|
delete shape;
|
|
}
|
|
m_collisionShapes.clear();
|
|
|
|
delete m_dynamicsWorld;
|
|
|
|
delete m_solver;
|
|
|
|
delete m_broadphase;
|
|
|
|
delete m_dispatcher;
|
|
|
|
delete m_collisionConfiguration;
|
|
|
|
}
|