Saxum/extern/bullet/Test/Source/Tests/Test_qtmulQV3.cpp
Fabian Klemp aeb6218d2d Renaming.
2014-10-24 11:49:46 +02:00

163 lines
4.0 KiB
C++

//
// Test_qtmulQV3.cpp
// BulletTest
//
// Copyright (c) 2011 Apple Inc.
//
#include "LinearMath/btScalar.h"
#if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
#include "Test_qtmulQV3.h"
#include "vector.h"
#include "Utils.h"
#include "main.h"
#include <math.h>
#include <string.h>
#include <LinearMath/btQuaternion.h>
#define BT_OP(a, b) ((a) * (b))
// reference code for testing purposes
static inline btQuaternion qtmulQV3_ref(const btQuaternion& q, const btVector3& w);
static inline btQuaternion qtmulQV3_ref(const btQuaternion& q, const btVector3& w)
{
return btQuaternion(
q.w() * w.x() + q.y() * w.z() - q.z() * w.y(),
q.w() * w.y() + q.z() * w.x() - q.x() * w.z(),
q.w() * w.z() + q.x() * w.y() - q.y() * w.x(),
-q.x() * w.x() - q.y() * w.y() - q.z() * w.z());
}
#define LOOPCOUNT 1024
#define NUM_CYCLES 1000
static inline btSimdFloat4 rand_f4(void)
{
return btAssign128( RANDF_m1p1, RANDF_m1p1, RANDF_m1p1, BT_NAN ); // w channel NaN
}
static inline btSimdFloat4 qtrand_f4(void)
{
return btAssign128( RANDF_m1p1, RANDF_m1p1, RANDF_m1p1, RANDF_m1p1 );
}
static inline btSimdFloat4 qtNAN_f4(void)
{
return btAssign128( BT_NAN, BT_NAN, BT_NAN, BT_NAN );
}
int Test_qtmulQV3(void)
{
btQuaternion q;
btVector3 v3;
// Init the data
q = btQuaternion(qtrand_f4());
v3 = btVector3(rand_f4());
btQuaternion correct_res, test_res;
correct_res = btQuaternion(qtNAN_f4());
test_res = btQuaternion(qtNAN_f4());
{
correct_res = qtmulQV3_ref(q, v3);
test_res = BT_OP(q, v3);
if( fabsf(correct_res.x() - test_res.x()) +
fabsf(correct_res.y() - test_res.y()) +
fabsf(correct_res.z() - test_res.z()) +
fabsf(correct_res.w() - test_res.w()) > FLT_EPSILON*8 )
{
vlog( "Error - qtmulQV3 result error! "
"\ncorrect = (%10.4f, %10.4f, %10.4f, %10.4f) "
"\ntested = (%10.4f, %10.4f, %10.4f, %10.4f) \n",
correct_res.x(), correct_res.y(),
correct_res.z(), correct_res.w(),
test_res.x(), test_res.y(),
test_res.z(), test_res.w());
return 1;
}
}
#define DATA_SIZE LOOPCOUNT
btQuaternion qt_arrR[DATA_SIZE];
btQuaternion qt_arr[DATA_SIZE];
btVector3 v3_arr[DATA_SIZE];
uint64_t scalarTime;
uint64_t vectorTime;
size_t j, k;
{
uint64_t startTime, bestTime, currentTime;
bestTime = -1LL;
scalarTime = 0;
for (j = 0; j < NUM_CYCLES; j++)
{
for( k = 0; k < DATA_SIZE; k++ )
{
qt_arr[k] = btQuaternion(qtrand_f4());
v3_arr[k] = btVector3(rand_f4());
}
startTime = ReadTicks();
for( k = 0; k < LOOPCOUNT; k++ )
{
qt_arrR[k] = qtmulQV3_ref(qt_arr[k], v3_arr[k]);
}
currentTime = ReadTicks() - startTime;
scalarTime += currentTime;
if( currentTime < bestTime )
bestTime = currentTime;
}
if( 0 == gReportAverageTimes )
scalarTime = bestTime;
else
scalarTime /= NUM_CYCLES;
}
{
uint64_t startTime, bestTime, currentTime;
bestTime = -1LL;
vectorTime = 0;
for (j = 0; j < NUM_CYCLES; j++)
{
for( k = 0; k < DATA_SIZE; k++ )
{
qt_arr[k] = btQuaternion(qtrand_f4());
v3_arr[k] = btVector3(rand_f4());
}
startTime = ReadTicks();
for( k = 0; k < LOOPCOUNT; k++ )
{
qt_arrR[k] = BT_OP(qt_arr[k], v3_arr[k]);
}
currentTime = ReadTicks() - startTime;
vectorTime += currentTime;
if( currentTime < bestTime )
bestTime = currentTime;
}
if( 0 == gReportAverageTimes )
vectorTime = bestTime;
else
vectorTime /= NUM_CYCLES;
}
vlog( "Timing:\n" );
vlog( " \t scalar\t vector\n" );
vlog( " \t%10.4f\t%10.4f\n", TicksToCycles( scalarTime ) / LOOPCOUNT,
TicksToCycles( vectorTime ) / LOOPCOUNT );
return 0;
}
#endif //BT_USE_SSE