#include "moving_sphere.h" Point3 Moving_sphere::center(double time) const { return center0 + ((time - time0) / (time1 - time0)) * (center1 - center0); } bool Moving_sphere::hit(const Ray& r, double tmin, double tmax, hit_record& rec) const { Vec3 oc = r.origin() - center(r.time()); auto a = r.direction().length_squared(); auto half_b = dot(oc, r.direction()); auto c = oc.length_squared() - radius * radius; auto discriminant = half_b*half_b - a*c; if (discriminant > 0) { auto root = std::sqrt(discriminant); auto temp = (-half_b - root) / a; if (temp < tmax && temp > tmin) { rec.t = temp; rec.p = r.at(rec.t); Vec3 outward_normal = (rec.p - center(r.time())) / radius; rec.set_face_normal(r, outward_normal); rec.mat_ptr = mat_ptr; return true; } temp = (-half_b + root) / a; if (temp < tmax && temp > tmin) { rec.t = temp; rec.p = r.at(rec.t); Vec3 outward_normal = (rec.p - center(r.time())) / radius; rec.set_face_normal(r, outward_normal); rec.mat_ptr = mat_ptr; return true; } } return false; } bool Moving_sphere::bounding_box(double t0, double t1, Aabb& output_box) const { Aabb box0( center(t0) - Vec3(radius, radius, radius), center(t0) + Vec3(radius, radius, radius)); Aabb box1( center(t1) - Vec3(radius, radius, radius), center(t1) + Vec3(radius, radius, radius)); output_box = surrounding_box(box0, box1); return true; }