#include #include #include #include #include #define LODEPNG_NO_COMPILE_DECODER #include "lodepng.h" #include #include "color.h" #include "vec3.h" #include "ray.h" #include "util.h" #include "hittable_list.h" #include "sphere.h" #include "moving_sphere.h" #include "camera.h" Color ray_color(const Ray& r, const Color& background, const Hittable& world, int depth) { hit_record rec; if (depth <= 0) return Color(0, 0, 0); if (!world.hit(r, 0.001, infinity, rec)) return background; Ray scattered; Color attenuation; Color emitted = rec.mat_ptr->emitted(rec.u, rec.v, rec.p); if (!rec.mat_ptr->scatter(r, rec, attenuation, scattered)) return emitted; return emitted + attenuation * ray_color(scattered, background, world, depth - 1); // fading background /*Vec3 unit_direction = unit_vector(r.direction()); auto t = 0.5 * (unit_direction.y() + 1.0); return (1.0 - t) * Color(1.0, 1.0, 1.0) + t * Color(0.5, 0.7, 1.0);*/ } Bvh_node setup_random_scene(const int sph_i) { Hittable_list world; //auto ground_material = std::make_shared(std::make_shared(Color(0.5, 0.5, 0.5))); auto checker = std::make_shared( std::make_shared(0.2, 0.3, 0.1), std::make_shared(0.9, 0.9, 0.9) ); auto ground_material = std::make_shared(checker); world.add(std::make_shared(Point3(0, -1000, 0), 1000, ground_material)); for (int a = -sph_i; a 0.9) { std::shared_ptr sphere_material; if (choose_mat < 0.2) { // diffuse moving auto albedo = Color::random() * Color::random(); sphere_material = std::make_shared(std::make_shared(albedo)); auto center2 = center + Vec3(0, random_double(0, 0.1), 0); world.add(std::make_shared(center, center2, 0.0, 1.0, 0.2, sphere_material)); } else if (choose_mat < 0.7) { // diffuse auto albedo = Color::random() * Color::random(); sphere_material = std::make_shared(std::make_shared(albedo)); world.add(std::make_shared(center, 0.2, sphere_material)); } else if (choose_mat < 0.95) { // metal auto albedo = Color::random(0.5, 1); auto fuzz = random_double(0, 0.5); sphere_material = std::make_shared(albedo, fuzz); world.add(std::make_shared(center, 0.2, sphere_material)); } else { // glass sphere_material = std::make_shared(1.45); world.add(std::make_shared(center, 0.2, sphere_material)); } } } } auto material1 = std::make_shared(1.45); world.add(std::make_shared(Point3(0, 1, 0), 1.0, material1)); auto material2 = std::make_shared(std::make_shared(Color(0.4, 0.2, 0.1))); world.add(std::make_shared(Point3(-4, 1, 0), 1.0, material2)); auto material3 = std::make_shared(Color(0.7, 0.6, 0.5), 0.0); world.add(std::make_shared(Point3(4, 1, 0), 1.0, material3)); return world.generate_bvh(0, 1); } Hittable_list two_spheres() { Hittable_list objects; auto checker = std::make_shared( std::make_shared(0.2, 0.3, 0.1), std::make_shared(0.9, 0.9, 0.9) ); auto mat = std::make_shared(checker); objects.add(std::make_shared(Point3(0, -10, 0), 10, mat)); objects.add(std::make_shared(Point3(0, 10, 0), 10, mat)); return objects; } struct render_tile { int start_x; int start_y; int end_x; int end_y; }; int main() { const auto aspect_ratio = 16.0 / 9.0; //const int image_width = 1920; //const int image_width = 1280; const int image_width = 768; //const int image_width = 384; const int image_height = static_cast(image_width / aspect_ratio); //const int samples_per_pixel = 10000; //const int samples_per_pixel = 5000; //const int samples_per_pixel = 2000; const int samples_per_pixel = 1000; //const int samples_per_pixel = 400; //const int samples_per_pixel = 50; const int max_depth = 50; const int tile_size = 128; //const int tile_size = 64; //const int sph_i = 3; //const int sph_i = 5; const int sph_i = 7; //const int sph_i = 11; auto world = setup_random_scene(sph_i); //auto world = two_spheres(); Point3 lookfrom(13, 2, 3); Point3 lookat(0, 0, 0); Vec3 vup(0, 1, 0); //auto dist_to_focus = (lookfrom - lookat).length(); auto dist_to_focus = 10; auto aperture = 0.1; //auto aperture = 0.0; Camera cam(lookfrom, lookat, vup, 20, aspect_ratio, aperture, dist_to_focus, 0.0, 1.0); const Color background(0, 0, 0); std::atomic queue_counter; boost::lockfree::queue queue(0); for (int i = 0; i image(image_width * image_height); #pragma omp parallel { render_tile rt; while (queue.pop(rt)) { --queue_counter; int qc = queue_counter; printf("\rTiles remaining: %4d", qc); std::cout << std::flush; for (int i = rt.start_x; i img_lode(image_width * image_height * 3); for (int i = 0; i