783 lines
21 KiB
C++
783 lines
21 KiB
C++
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// Created : 2007-03-14
|
|
// Updated : 2013-12-25
|
|
// Licence : This source is under MIT License
|
|
// File : glm/gtx/bit.inl
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "../detail/_vectorize.hpp"
|
|
#include <limits>
|
|
|
|
namespace glm
|
|
{
|
|
template <typename genIType>
|
|
GLM_FUNC_QUALIFIER genIType mask
|
|
(
|
|
genIType const & count
|
|
)
|
|
{
|
|
return ((genIType(1) << (count)) - genIType(1));
|
|
}
|
|
|
|
VECTORIZE_VEC(mask)
|
|
|
|
// highestBitValue
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType highestBitValue
|
|
(
|
|
genType const & value
|
|
)
|
|
{
|
|
genType tmp = value;
|
|
genType result = genType(0);
|
|
while(tmp)
|
|
{
|
|
result = (tmp & (~tmp + 1)); // grab lowest bit
|
|
tmp &= ~result; // clear lowest bit
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template <typename T, precision P>
|
|
GLM_FUNC_QUALIFIER detail::tvec2<int, P> highestBitValue
|
|
(
|
|
detail::tvec2<T, P> const & value
|
|
)
|
|
{
|
|
return detail::tvec2<int, P>(
|
|
highestBitValue(value[0]),
|
|
highestBitValue(value[1]));
|
|
}
|
|
|
|
template <typename T, precision P>
|
|
GLM_FUNC_QUALIFIER detail::tvec3<int, P> highestBitValue
|
|
(
|
|
detail::tvec3<T, P> const & value
|
|
)
|
|
{
|
|
return detail::tvec3<int, P>(
|
|
highestBitValue(value[0]),
|
|
highestBitValue(value[1]),
|
|
highestBitValue(value[2]));
|
|
}
|
|
|
|
template <typename T, precision P>
|
|
GLM_FUNC_QUALIFIER detail::tvec4<int, P> highestBitValue
|
|
(
|
|
detail::tvec4<T, P> const & value
|
|
)
|
|
{
|
|
return detail::tvec4<int, P>(
|
|
highestBitValue(value[0]),
|
|
highestBitValue(value[1]),
|
|
highestBitValue(value[2]),
|
|
highestBitValue(value[3]));
|
|
}
|
|
|
|
// isPowerOfTwo
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER bool isPowerOfTwo(genType const & Value)
|
|
{
|
|
//detail::If<std::numeric_limits<genType>::is_signed>::apply(abs, Value);
|
|
//return !(Value & (Value - 1));
|
|
|
|
// For old complier?
|
|
genType Result = Value;
|
|
if(std::numeric_limits<genType>::is_signed)
|
|
Result = abs(Result);
|
|
return !(Result & (Result - 1));
|
|
}
|
|
|
|
template <typename T, precision P>
|
|
GLM_FUNC_QUALIFIER detail::tvec2<bool, P> isPowerOfTwo
|
|
(
|
|
detail::tvec2<T, P> const & value
|
|
)
|
|
{
|
|
return detail::tvec2<bool, P>(
|
|
isPowerOfTwo(value[0]),
|
|
isPowerOfTwo(value[1]));
|
|
}
|
|
|
|
template <typename T, precision P>
|
|
GLM_FUNC_QUALIFIER detail::tvec3<bool, P> isPowerOfTwo
|
|
(
|
|
detail::tvec3<T, P> const & value
|
|
)
|
|
{
|
|
return detail::tvec3<bool, P>(
|
|
isPowerOfTwo(value[0]),
|
|
isPowerOfTwo(value[1]),
|
|
isPowerOfTwo(value[2]));
|
|
}
|
|
|
|
template <typename T, precision P>
|
|
GLM_FUNC_QUALIFIER detail::tvec4<bool, P> isPowerOfTwo
|
|
(
|
|
detail::tvec4<T, P> const & value
|
|
)
|
|
{
|
|
return detail::tvec4<bool, P>(
|
|
isPowerOfTwo(value[0]),
|
|
isPowerOfTwo(value[1]),
|
|
isPowerOfTwo(value[2]),
|
|
isPowerOfTwo(value[3]));
|
|
}
|
|
|
|
// powerOfTwoAbove
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType powerOfTwoAbove(genType const & value)
|
|
{
|
|
return isPowerOfTwo(value) ? value : highestBitValue(value) << 1;
|
|
}
|
|
|
|
VECTORIZE_VEC(powerOfTwoAbove)
|
|
|
|
// powerOfTwoBelow
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType powerOfTwoBelow
|
|
(
|
|
genType const & value
|
|
)
|
|
{
|
|
return isPowerOfTwo(value) ? value : highestBitValue(value);
|
|
}
|
|
|
|
VECTORIZE_VEC(powerOfTwoBelow)
|
|
|
|
// powerOfTwoNearest
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType powerOfTwoNearest
|
|
(
|
|
genType const & value
|
|
)
|
|
{
|
|
if(isPowerOfTwo(value))
|
|
return value;
|
|
|
|
genType prev = highestBitValue(value);
|
|
genType next = prev << 1;
|
|
return (next - value) < (value - prev) ? next : prev;
|
|
}
|
|
|
|
VECTORIZE_VEC(powerOfTwoNearest)
|
|
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType bitRevert(genType const & In)
|
|
{
|
|
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_integer, "'bitRevert' only accept integer values");
|
|
|
|
genType Out = 0;
|
|
std::size_t BitSize = sizeof(genType) * 8;
|
|
for(std::size_t i = 0; i < BitSize; ++i)
|
|
if(In & (genType(1) << i))
|
|
Out |= genType(1) << (BitSize - 1 - i);
|
|
return Out;
|
|
}
|
|
|
|
VECTORIZE_VEC(bitRevert)
|
|
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType bitRotateRight(genType const & In, std::size_t Shift)
|
|
{
|
|
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_integer, "'bitRotateRight' only accept integer values");
|
|
|
|
std::size_t BitSize = sizeof(genType) * 8;
|
|
return (In << Shift) | (In >> (BitSize - Shift));
|
|
}
|
|
|
|
template <typename T, precision P>
|
|
GLM_FUNC_QUALIFIER detail::tvec2<T, P> bitRotateRight
|
|
(
|
|
detail::tvec2<T, P> const & Value,
|
|
std::size_t Shift
|
|
)
|
|
{
|
|
return detail::tvec2<T, P>(
|
|
bitRotateRight(Value[0], Shift),
|
|
bitRotateRight(Value[1], Shift));
|
|
}
|
|
|
|
template <typename T, precision P>
|
|
GLM_FUNC_QUALIFIER detail::tvec3<T, P> bitRotateRight
|
|
(
|
|
detail::tvec3<T, P> const & Value,
|
|
std::size_t Shift
|
|
)
|
|
{
|
|
return detail::tvec3<T, P>(
|
|
bitRotateRight(Value[0], Shift),
|
|
bitRotateRight(Value[1], Shift),
|
|
bitRotateRight(Value[2], Shift));
|
|
}
|
|
|
|
template <typename T, precision P>
|
|
GLM_FUNC_QUALIFIER detail::tvec4<T, P> bitRotateRight
|
|
(
|
|
detail::tvec4<T, P> const & Value,
|
|
std::size_t Shift
|
|
)
|
|
{
|
|
return detail::tvec4<T, P>(
|
|
bitRotateRight(Value[0], Shift),
|
|
bitRotateRight(Value[1], Shift),
|
|
bitRotateRight(Value[2], Shift),
|
|
bitRotateRight(Value[3], Shift));
|
|
}
|
|
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType bitRotateLeft(genType const & In, std::size_t Shift)
|
|
{
|
|
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_integer, "'bitRotateLeft' only accept integer values");
|
|
|
|
std::size_t BitSize = sizeof(genType) * 8;
|
|
return (In >> Shift) | (In << (BitSize - Shift));
|
|
}
|
|
|
|
template <typename T, precision P>
|
|
GLM_FUNC_QUALIFIER detail::tvec2<T, P> bitRotateLeft
|
|
(
|
|
detail::tvec2<T, P> const & Value,
|
|
std::size_t Shift
|
|
)
|
|
{
|
|
return detail::tvec2<T, P>(
|
|
bitRotateLeft(Value[0], Shift),
|
|
bitRotateLeft(Value[1], Shift));
|
|
}
|
|
|
|
template <typename T, precision P>
|
|
GLM_FUNC_QUALIFIER detail::tvec3<T, P> bitRotateLeft
|
|
(
|
|
detail::tvec3<T, P> const & Value,
|
|
std::size_t Shift
|
|
)
|
|
{
|
|
return detail::tvec3<T, P>(
|
|
bitRotateLeft(Value[0], Shift),
|
|
bitRotateLeft(Value[1], Shift),
|
|
bitRotateLeft(Value[2], Shift));
|
|
}
|
|
|
|
template <typename T, precision P>
|
|
GLM_FUNC_QUALIFIER detail::tvec4<T, P> bitRotateLeft
|
|
(
|
|
detail::tvec4<T, P> const & Value,
|
|
std::size_t Shift
|
|
)
|
|
{
|
|
return detail::tvec4<T, P>(
|
|
bitRotateLeft(Value[0], Shift),
|
|
bitRotateLeft(Value[1], Shift),
|
|
bitRotateLeft(Value[2], Shift),
|
|
bitRotateLeft(Value[3], Shift));
|
|
}
|
|
|
|
template <typename genIUType>
|
|
GLM_FUNC_QUALIFIER genIUType fillBitfieldWithOne
|
|
(
|
|
genIUType const & Value,
|
|
int const & FromBit,
|
|
int const & ToBit
|
|
)
|
|
{
|
|
assert(FromBit <= ToBit);
|
|
assert(ToBit <= sizeof(genIUType) * std::size_t(8));
|
|
|
|
genIUType Result = Value;
|
|
for(std::size_t i = 0; i <= ToBit; ++i)
|
|
Result |= (1 << i);
|
|
return Result;
|
|
}
|
|
|
|
template <typename genIUType>
|
|
GLM_FUNC_QUALIFIER genIUType fillBitfieldWithZero
|
|
(
|
|
genIUType const & Value,
|
|
int const & FromBit,
|
|
int const & ToBit
|
|
)
|
|
{
|
|
assert(FromBit <= ToBit);
|
|
assert(ToBit <= sizeof(genIUType) * std::size_t(8));
|
|
|
|
genIUType Result = Value;
|
|
for(std::size_t i = 0; i <= ToBit; ++i)
|
|
Result &= ~(1 << i);
|
|
return Result;
|
|
}
|
|
|
|
namespace detail
|
|
{
|
|
template <typename PARAM, typename RET>
|
|
GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y);
|
|
|
|
template <typename PARAM, typename RET>
|
|
GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z);
|
|
|
|
template <typename PARAM, typename RET>
|
|
GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w);
|
|
|
|
/*
|
|
template <typename PARAM, typename RET>
|
|
inline RET bitfieldInterleave(PARAM x, PARAM y)
|
|
{
|
|
RET Result = 0;
|
|
for (int i = 0; i < sizeof(PARAM) * 8; i++)
|
|
Result |= (x & 1U << i) << i | (y & 1U << i) << (i + 1);
|
|
return Result;
|
|
}
|
|
|
|
template <typename PARAM, typename RET>
|
|
inline RET bitfieldInterleave(PARAM x, PARAM y, PARAM z)
|
|
{
|
|
RET Result = 0;
|
|
for (RET i = 0; i < sizeof(PARAM) * 8; i++)
|
|
{
|
|
Result |= ((RET(x) & (RET(1) << i)) << ((i << 1) + 0));
|
|
Result |= ((RET(y) & (RET(1) << i)) << ((i << 1) + 1));
|
|
Result |= ((RET(z) & (RET(1) << i)) << ((i << 1) + 2));
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
template <typename PARAM, typename RET>
|
|
inline RET bitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w)
|
|
{
|
|
RET Result = 0;
|
|
for (int i = 0; i < sizeof(PARAM) * 8; i++)
|
|
{
|
|
Result |= ((((RET(x) >> i) & RET(1))) << RET((i << 2) + 0));
|
|
Result |= ((((RET(y) >> i) & RET(1))) << RET((i << 2) + 1));
|
|
Result |= ((((RET(z) >> i) & RET(1))) << RET((i << 2) + 2));
|
|
Result |= ((((RET(w) >> i) & RET(1))) << RET((i << 2) + 3));
|
|
}
|
|
return Result;
|
|
}
|
|
*/
|
|
template <>
|
|
GLM_FUNC_QUALIFIER glm::uint16 bitfieldInterleave(glm::uint8 x, glm::uint8 y)
|
|
{
|
|
glm::uint16 REG1(x);
|
|
glm::uint16 REG2(y);
|
|
|
|
REG1 = ((REG1 << 4) | REG1) & glm::uint16(0x0F0F);
|
|
REG2 = ((REG2 << 4) | REG2) & glm::uint16(0x0F0F);
|
|
|
|
REG1 = ((REG1 << 2) | REG1) & glm::uint16(0x3333);
|
|
REG2 = ((REG2 << 2) | REG2) & glm::uint16(0x3333);
|
|
|
|
REG1 = ((REG1 << 1) | REG1) & glm::uint16(0x5555);
|
|
REG2 = ((REG2 << 1) | REG2) & glm::uint16(0x5555);
|
|
|
|
return REG1 | (REG2 << 1);
|
|
}
|
|
|
|
template <>
|
|
GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint16 x, glm::uint16 y)
|
|
{
|
|
glm::uint32 REG1(x);
|
|
glm::uint32 REG2(y);
|
|
|
|
REG1 = ((REG1 << 8) | REG1) & glm::uint32(0x00FF00FF);
|
|
REG2 = ((REG2 << 8) | REG2) & glm::uint32(0x00FF00FF);
|
|
|
|
REG1 = ((REG1 << 4) | REG1) & glm::uint32(0x0F0F0F0F);
|
|
REG2 = ((REG2 << 4) | REG2) & glm::uint32(0x0F0F0F0F);
|
|
|
|
REG1 = ((REG1 << 2) | REG1) & glm::uint32(0x33333333);
|
|
REG2 = ((REG2 << 2) | REG2) & glm::uint32(0x33333333);
|
|
|
|
REG1 = ((REG1 << 1) | REG1) & glm::uint32(0x55555555);
|
|
REG2 = ((REG2 << 1) | REG2) & glm::uint32(0x55555555);
|
|
|
|
return REG1 | (REG2 << 1);
|
|
}
|
|
|
|
template <>
|
|
GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y)
|
|
{
|
|
glm::uint64 REG1(x);
|
|
glm::uint64 REG2(y);
|
|
|
|
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
|
|
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
|
|
|
|
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
|
|
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
|
|
|
|
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
|
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
|
|
|
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
|
|
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
|
|
|
|
REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
|
|
REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
|
|
|
|
return REG1 | (REG2 << 1);
|
|
}
|
|
|
|
template <>
|
|
GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z)
|
|
{
|
|
glm::uint32 REG1(x);
|
|
glm::uint32 REG2(y);
|
|
glm::uint32 REG3(z);
|
|
|
|
REG1 = ((REG1 << 16) | REG1) & glm::uint32(0x00FF0000FF0000FF);
|
|
REG2 = ((REG2 << 16) | REG2) & glm::uint32(0x00FF0000FF0000FF);
|
|
REG3 = ((REG3 << 16) | REG3) & glm::uint32(0x00FF0000FF0000FF);
|
|
|
|
REG1 = ((REG1 << 8) | REG1) & glm::uint32(0xF00F00F00F00F00F);
|
|
REG2 = ((REG2 << 8) | REG2) & glm::uint32(0xF00F00F00F00F00F);
|
|
REG3 = ((REG3 << 8) | REG3) & glm::uint32(0xF00F00F00F00F00F);
|
|
|
|
REG1 = ((REG1 << 4) | REG1) & glm::uint32(0x30C30C30C30C30C3);
|
|
REG2 = ((REG2 << 4) | REG2) & glm::uint32(0x30C30C30C30C30C3);
|
|
REG3 = ((REG3 << 4) | REG3) & glm::uint32(0x30C30C30C30C30C3);
|
|
|
|
REG1 = ((REG1 << 2) | REG1) & glm::uint32(0x9249249249249249);
|
|
REG2 = ((REG2 << 2) | REG2) & glm::uint32(0x9249249249249249);
|
|
REG3 = ((REG3 << 2) | REG3) & glm::uint32(0x9249249249249249);
|
|
|
|
return REG1 | (REG2 << 1) | (REG3 << 2);
|
|
}
|
|
|
|
template <>
|
|
GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z)
|
|
{
|
|
glm::uint64 REG1(x);
|
|
glm::uint64 REG2(y);
|
|
glm::uint64 REG3(z);
|
|
|
|
REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFF);
|
|
REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFF);
|
|
REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFF);
|
|
|
|
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FF);
|
|
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FF);
|
|
REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FF);
|
|
|
|
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0xF00F00F00F00F00F);
|
|
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0xF00F00F00F00F00F);
|
|
REG3 = ((REG3 << 8) | REG3) & glm::uint64(0xF00F00F00F00F00F);
|
|
|
|
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x30C30C30C30C30C3);
|
|
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x30C30C30C30C30C3);
|
|
REG3 = ((REG3 << 4) | REG3) & glm::uint64(0x30C30C30C30C30C3);
|
|
|
|
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x9249249249249249);
|
|
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x9249249249249249);
|
|
REG3 = ((REG3 << 2) | REG3) & glm::uint64(0x9249249249249249);
|
|
|
|
return REG1 | (REG2 << 1) | (REG3 << 2);
|
|
}
|
|
|
|
template <>
|
|
GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y, glm::uint32 z)
|
|
{
|
|
glm::uint64 REG1(x);
|
|
glm::uint64 REG2(y);
|
|
glm::uint64 REG3(z);
|
|
|
|
REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFF);
|
|
REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFF);
|
|
REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFF);
|
|
|
|
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FF);
|
|
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FF);
|
|
REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FF);
|
|
|
|
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0xF00F00F00F00F00F);
|
|
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0xF00F00F00F00F00F);
|
|
REG3 = ((REG3 << 8) | REG3) & glm::uint64(0xF00F00F00F00F00F);
|
|
|
|
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x30C30C30C30C30C3);
|
|
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x30C30C30C30C30C3);
|
|
REG3 = ((REG3 << 4) | REG3) & glm::uint64(0x30C30C30C30C30C3);
|
|
|
|
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x9249249249249249);
|
|
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x9249249249249249);
|
|
REG3 = ((REG3 << 2) | REG3) & glm::uint64(0x9249249249249249);
|
|
|
|
return REG1 | (REG2 << 1) | (REG3 << 2);
|
|
}
|
|
|
|
template <>
|
|
GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z, glm::uint8 w)
|
|
{
|
|
glm::uint32 REG1(x);
|
|
glm::uint32 REG2(y);
|
|
glm::uint32 REG3(z);
|
|
glm::uint32 REG4(w);
|
|
|
|
REG1 = ((REG1 << 12) | REG1) & glm::uint32(0x000F000F000F000F);
|
|
REG2 = ((REG2 << 12) | REG2) & glm::uint32(0x000F000F000F000F);
|
|
REG3 = ((REG3 << 12) | REG3) & glm::uint32(0x000F000F000F000F);
|
|
REG4 = ((REG4 << 12) | REG4) & glm::uint32(0x000F000F000F000F);
|
|
|
|
REG1 = ((REG1 << 6) | REG1) & glm::uint32(0x0303030303030303);
|
|
REG2 = ((REG2 << 6) | REG2) & glm::uint32(0x0303030303030303);
|
|
REG3 = ((REG3 << 6) | REG3) & glm::uint32(0x0303030303030303);
|
|
REG4 = ((REG4 << 6) | REG4) & glm::uint32(0x0303030303030303);
|
|
|
|
REG1 = ((REG1 << 3) | REG1) & glm::uint32(0x1111111111111111);
|
|
REG2 = ((REG2 << 3) | REG2) & glm::uint32(0x1111111111111111);
|
|
REG3 = ((REG3 << 3) | REG3) & glm::uint32(0x1111111111111111);
|
|
REG4 = ((REG4 << 3) | REG4) & glm::uint32(0x1111111111111111);
|
|
|
|
return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3);
|
|
}
|
|
|
|
template <>
|
|
GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z, glm::uint16 w)
|
|
{
|
|
glm::uint64 REG1(x);
|
|
glm::uint64 REG2(y);
|
|
glm::uint64 REG3(z);
|
|
glm::uint64 REG4(w);
|
|
|
|
REG1 = ((REG1 << 24) | REG1) & glm::uint64(0x000000FF000000FF);
|
|
REG2 = ((REG2 << 24) | REG2) & glm::uint64(0x000000FF000000FF);
|
|
REG3 = ((REG3 << 24) | REG3) & glm::uint64(0x000000FF000000FF);
|
|
REG4 = ((REG4 << 24) | REG4) & glm::uint64(0x000000FF000000FF);
|
|
|
|
REG1 = ((REG1 << 12) | REG1) & glm::uint64(0x000F000F000F000F);
|
|
REG2 = ((REG2 << 12) | REG2) & glm::uint64(0x000F000F000F000F);
|
|
REG3 = ((REG3 << 12) | REG3) & glm::uint64(0x000F000F000F000F);
|
|
REG4 = ((REG4 << 12) | REG4) & glm::uint64(0x000F000F000F000F);
|
|
|
|
REG1 = ((REG1 << 6) | REG1) & glm::uint64(0x0303030303030303);
|
|
REG2 = ((REG2 << 6) | REG2) & glm::uint64(0x0303030303030303);
|
|
REG3 = ((REG3 << 6) | REG3) & glm::uint64(0x0303030303030303);
|
|
REG4 = ((REG4 << 6) | REG4) & glm::uint64(0x0303030303030303);
|
|
|
|
REG1 = ((REG1 << 3) | REG1) & glm::uint64(0x1111111111111111);
|
|
REG2 = ((REG2 << 3) | REG2) & glm::uint64(0x1111111111111111);
|
|
REG3 = ((REG3 << 3) | REG3) & glm::uint64(0x1111111111111111);
|
|
REG4 = ((REG4 << 3) | REG4) & glm::uint64(0x1111111111111111);
|
|
|
|
return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3);
|
|
}
|
|
}//namespace detail
|
|
|
|
GLM_FUNC_QUALIFIER int16 bitfieldInterleave(int8 x, int8 y)
|
|
{
|
|
union sign8
|
|
{
|
|
int8 i;
|
|
uint8 u;
|
|
} sign_x, sign_y;
|
|
|
|
union sign16
|
|
{
|
|
int16 i;
|
|
uint16 u;
|
|
} result;
|
|
|
|
sign_x.i = x;
|
|
sign_y.i = y;
|
|
result.u = bitfieldInterleave(sign_x.u, sign_y.u);
|
|
|
|
return result.i;
|
|
}
|
|
|
|
GLM_FUNC_QUALIFIER uint16 bitfieldInterleave(uint8 x, uint8 y)
|
|
{
|
|
return detail::bitfieldInterleave<uint8, uint16>(x, y);
|
|
}
|
|
|
|
GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int16 x, int16 y)
|
|
{
|
|
union sign16
|
|
{
|
|
int16 i;
|
|
uint16 u;
|
|
} sign_x, sign_y;
|
|
|
|
union sign32
|
|
{
|
|
int32 i;
|
|
uint32 u;
|
|
} result;
|
|
|
|
sign_x.i = x;
|
|
sign_y.i = y;
|
|
result.u = bitfieldInterleave(sign_x.u, sign_y.u);
|
|
|
|
return result.i;
|
|
}
|
|
|
|
GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint16 x, uint16 y)
|
|
{
|
|
return detail::bitfieldInterleave<uint16, uint32>(x, y);
|
|
}
|
|
|
|
GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int32 x, int32 y)
|
|
{
|
|
union sign32
|
|
{
|
|
int32 i;
|
|
uint32 u;
|
|
} sign_x, sign_y;
|
|
|
|
union sign64
|
|
{
|
|
int64 i;
|
|
uint64 u;
|
|
} result;
|
|
|
|
sign_x.i = x;
|
|
sign_y.i = y;
|
|
result.u = bitfieldInterleave(sign_x.u, sign_y.u);
|
|
|
|
return result.i;
|
|
}
|
|
|
|
GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint32 x, uint32 y)
|
|
{
|
|
return detail::bitfieldInterleave<uint32, uint64>(x, y);
|
|
}
|
|
|
|
GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int8 x, int8 y, int8 z)
|
|
{
|
|
union sign8
|
|
{
|
|
int8 i;
|
|
uint8 u;
|
|
} sign_x, sign_y, sign_z;
|
|
|
|
union sign32
|
|
{
|
|
int32 i;
|
|
uint32 u;
|
|
} result;
|
|
|
|
sign_x.i = x;
|
|
sign_y.i = y;
|
|
sign_z.i = z;
|
|
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u);
|
|
|
|
return result.i;
|
|
}
|
|
|
|
GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z)
|
|
{
|
|
return detail::bitfieldInterleave<uint8, uint32>(x, y, z);
|
|
}
|
|
|
|
GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int16 x, int16 y, int16 z)
|
|
{
|
|
union sign16
|
|
{
|
|
int16 i;
|
|
uint16 u;
|
|
} sign_x, sign_y, sign_z;
|
|
|
|
union sign64
|
|
{
|
|
int64 i;
|
|
uint64 u;
|
|
} result;
|
|
|
|
sign_x.i = x;
|
|
sign_y.i = y;
|
|
sign_z.i = z;
|
|
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u);
|
|
|
|
return result.i;
|
|
}
|
|
|
|
GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z)
|
|
{
|
|
return detail::bitfieldInterleave<uint32, uint64>(x, y, z);
|
|
}
|
|
|
|
GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int32 x, int32 y, int32 z)
|
|
{
|
|
union sign16
|
|
{
|
|
int32 i;
|
|
uint32 u;
|
|
} sign_x, sign_y, sign_z;
|
|
|
|
union sign64
|
|
{
|
|
int64 i;
|
|
uint64 u;
|
|
} result;
|
|
|
|
sign_x.i = x;
|
|
sign_y.i = y;
|
|
sign_z.i = z;
|
|
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u);
|
|
|
|
return result.i;
|
|
}
|
|
|
|
GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint32 x, uint32 y, uint32 z)
|
|
{
|
|
return detail::bitfieldInterleave<uint32, uint64>(x, y, z);
|
|
}
|
|
|
|
GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int8 x, int8 y, int8 z, int8 w)
|
|
{
|
|
union sign8
|
|
{
|
|
int8 i;
|
|
uint8 u;
|
|
} sign_x, sign_y, sign_z, sign_w;
|
|
|
|
union sign32
|
|
{
|
|
int32 i;
|
|
uint32 u;
|
|
} result;
|
|
|
|
sign_x.i = x;
|
|
sign_y.i = y;
|
|
sign_z.i = z;
|
|
sign_w.i = w;
|
|
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u, sign_w.u);
|
|
|
|
return result.i;
|
|
}
|
|
|
|
GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z, uint8 w)
|
|
{
|
|
return detail::bitfieldInterleave<uint8, uint32>(x, y, z, w);
|
|
}
|
|
|
|
GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int16 x, int16 y, int16 z, int16 w)
|
|
{
|
|
union sign16
|
|
{
|
|
int16 i;
|
|
uint16 u;
|
|
} sign_x, sign_y, sign_z, sign_w;
|
|
|
|
union sign64
|
|
{
|
|
int64 i;
|
|
uint64 u;
|
|
} result;
|
|
|
|
sign_x.i = x;
|
|
sign_y.i = y;
|
|
sign_z.i = z;
|
|
sign_w.i = w;
|
|
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u, sign_w.u);
|
|
|
|
return result.i;
|
|
}
|
|
|
|
GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z, uint16 w)
|
|
{
|
|
return detail::bitfieldInterleave<uint16, uint64>(x, y, z, w);
|
|
}
|
|
|
|
}//namespace glm
|